Deep learning–based segmentation of the trigeminal nerve and surrounding vasculature in trigeminal neuralgia

神经血管束 医学 三叉神经痛 分割 三叉神经 磁共振成像 深度学习 体素 Sørensen–骰子系数 解剖 放射科 人工智能 图像分割 计算机科学 外科
作者
Kyra Halbert-Elliott,Michael E. Xie,Bryan C. Dong,Oishika Das,Xihang Wang,Christopher M. Jackson,Michael Lim,Judy Huang,Vivek Yedavalli,Chetan Bettegowda,Risheng Xu
出处
期刊:Journal of Neurosurgery [American Association of Neurological Surgeons]
卷期号:: 1-9
标识
DOI:10.3171/2024.10.jns241060
摘要

OBJECTIVE Preoperative workup of trigeminal neuralgia (TN) consists of identification of neurovascular features on MRI. In this study, the authors apply and evaluate the performance of deep learning models for segmentation of the trigeminal nerve and surrounding vasculature to quantify anatomical features of the nerve and vessels. METHODS Six U-Net–based neural networks, each with a different encoder backbone, were trained to label constructive interference in steady-state MRI voxels as nerve, vasculature, or background. A retrospective dataset of 50 TN patients at the authors’ institution who underwent preoperative high-resolution MRI in 2022 was utilized to train and test the models. Performance was measured by the Dice coefficient and intersection over union (IoU) metrics. Anatomical characteristics, such as surface area of neurovascular contact and distance to the contact point, were computed and compared between the predicted and ground truth segmentations. RESULTS Of the evaluated models, the best performing was U-Net with an SE-ResNet50 backbone (Dice score = 0.775 ± 0.015, IoU score = 0.681 ± 0.015). When the SE-ResNet50 backbone was used, the average surface area of neurovascular contact in the testing dataset was 6.90 mm 2 , which was not significantly different from the surface area calculated from manual segmentation (p = 0.83). The average calculated distance from the brainstem to the contact point was 4.34 mm, which was also not significantly different from manual segmentation (p = 0.29). CONCLUSIONS U-Net–based neural networks perform well for segmenting trigeminal nerve and vessels from preoperative MRI volumes. This technology enables the development of quantitative and objective metrics for radiographic evaluation of TN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hnxxangel完成签到,获得积分10
刚刚
rongyiming完成签到,获得积分10
刚刚
Ayo大肥猫完成签到,获得积分10
刚刚
胡图图完成签到,获得积分10
刚刚
可爱青曼完成签到,获得积分10
刚刚
呐呐完成签到,获得积分10
1秒前
林木木完成签到,获得积分20
2秒前
李健的小迷弟应助LSxtd采纳,获得30
2秒前
启成Z完成签到 ,获得积分10
2秒前
2秒前
huangluling发布了新的文献求助10
2秒前
2150号发布了新的文献求助10
3秒前
朱哦哦发布了新的文献求助10
4秒前
沐风发布了新的文献求助10
4秒前
现实的航空完成签到,获得积分10
4秒前
5秒前
王SQ完成签到 ,获得积分10
5秒前
小王完成签到,获得积分10
5秒前
方圆几里完成签到,获得积分10
5秒前
dgfhg发布了新的文献求助10
5秒前
wq发布了新的文献求助10
5秒前
yyy完成签到,获得积分10
5秒前
Iiiilr完成签到 ,获得积分10
6秒前
6秒前
quhayley完成签到,获得积分0
6秒前
栓Q完成签到,获得积分10
7秒前
无奈敏buwangchuxin完成签到,获得积分10
7秒前
霸波儿奔发布了新的文献求助10
7秒前
烟花应助junzpeng采纳,获得10
7秒前
小徐801完成签到,获得积分10
8秒前
Samuel完成签到,获得积分20
8秒前
香蕉觅云应助平常语堂采纳,获得10
8秒前
可耐的香芦完成签到,获得积分10
8秒前
8秒前
Ivy完成签到,获得积分10
9秒前
啦啦鱼完成签到 ,获得积分10
9秒前
9秒前
故意的松思完成签到,获得积分10
9秒前
DEF完成签到,获得积分10
9秒前
猫猫完成签到 ,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792815
求助须知:如何正确求助?哪些是违规求助? 3337271
关于积分的说明 10284330
捐赠科研通 3054023
什么是DOI,文献DOI怎么找? 1675755
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761534