Study on the Effects of Composite Catalysts on the Curing Process and Pot Life of the HTPB/HDI‐Trimer Binder System

三聚体 复合数 固化(化学) 催化作用 复合材料 材料科学 化学工程 高分子化学 化学 有机化学 二聚体 工程类
作者
Hui Ma,Jiahu Guo,Yucun Liu,Chai Tao,Qin Zhang,Dong Wang,Yang Yang,Jianbo Lai,Zhigang Wang
出处
期刊:Journal of Applied Polymer Science [Wiley]
卷期号:142 (36)
标识
DOI:10.1002/app.57424
摘要

ABSTRACT Hydroxyl‐terminated polybutadiene (HTPB), a linear liquid rubber with terminal hydroxyl groups, is a cornerstone binder in polymer‐bonded explosives (PBX) and composite propellants. Its cross‐linking with hexamethylene diisocyanate trimer (HDI‐trimer), a trifunctional isocyanate crosslinker, faces critical challenges in balancing pot life and curing rates for industrial scalability. Traditional single‐catalyst systems, such as dibutyl tin dilaurate (DBTDL) and tin octoate (TECH), exhibit high catalytic activity and a relatively short pot life, which limit the industrial application. This study aims to resolve these limitations by engineering blended catalyst systems to synergistically modulate cross‐linking kinetics and expand industrial adaptability. Five catalysts, namely TECH, FeAA (iron acetylacetonate), DABCO (1,4‐Diazabicyclo[2.2.2]octane), TPB (triphenyl bismuth), and nano‐ZnO, were blended pairwise at 0.05 w.t.% (1:1 functional group molar ratio) within HTPB/HDI‐trimer binder systems. Viscosity build‐up of the binder systems during the curing process was monitored via rotational viscometry at 45°C (rotor #29, 0.5 rpm), with Arrhenius modeling to quantify rheological reaction rates (k η ) and pot life. Full curing at 45°C was achieved within 24 h, eliminating energy‐intensive thermal curing. This work pioneers a multi‐site catalytic strategy for HTPB systems, enabling energy‐efficient room‐temperature curing, which is a paradigm shift for PBX and solid composite propellant manufacturing. The composite catalysts significantly reduce energy consumption costs and provide tunable pot life to accommodate industrial processing requirements. Commercial applications span defense, aerospace, and automotive sectors, where rapid processing and material stability are paramount.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助Yuang采纳,获得10
2秒前
充电宝应助Lllll采纳,获得10
4秒前
4秒前
852应助贰叁采纳,获得10
4秒前
5秒前
阅遍SCI完成签到,获得积分10
6秒前
坦率芹菜发布了新的文献求助10
6秒前
不安枕头完成签到 ,获得积分10
7秒前
Kyone完成签到,获得积分10
8秒前
wanci应助小白采纳,获得10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助150
9秒前
77发布了新的文献求助10
9秒前
彳亍1117应助十三月的过客采纳,获得10
10秒前
10秒前
善学以致用应助李成斌采纳,获得10
11秒前
尽职和喵子完成签到,获得积分10
11秒前
刘天煜完成签到,获得积分20
12秒前
12秒前
14秒前
可靠小懒虫完成签到,获得积分10
14秒前
揚Young完成签到,获得积分10
15秒前
李浩然发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
乐乐应助遇见0608采纳,获得10
20秒前
changping应助科研通管家采纳,获得10
20秒前
20秒前
ZOE应助科研通管家采纳,获得20
20秒前
20秒前
小马甲应助科研通管家采纳,获得10
21秒前
哎不听不听完成签到 ,获得积分10
21秒前
21秒前
一叶知秋应助科研通管家采纳,获得150
21秒前
今后应助科研通管家采纳,获得10
21秒前
changping应助科研通管家采纳,获得10
21秒前
一叶知秋应助科研通管家采纳,获得150
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5156500
求助须知:如何正确求助?哪些是违规求助? 4351934
关于积分的说明 13550580
捐赠科研通 4195119
什么是DOI,文献DOI怎么找? 2300845
邀请新用户注册赠送积分活动 1300773
关于科研通互助平台的介绍 1245847