亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An MR‐only deep learning inference model‐based dose estimation algorithm for MR‐guided adaptive radiation therapy

计算机科学 影像引导放射治疗 蒙特卡罗方法 算法 医学影像学 放射治疗 放射治疗计划 成像体模 磁共振成像 剂量学 工作流程 人工智能 残余物 核医学 数学 医学 放射科 统计 数据库
作者
Zhiqiang Liu,Kuo Men,Weigang Hu,Jianrong Dai,Jiawei Fan
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17759
摘要

Abstract Background Magnetic resonance‐guided adaptive radiation therapy (MRgART) systems combine Magnetic resonance imaging (MRI) technology with linear accelerators (LINAC) to enhance the precision and efficacy of cancer treatment. These systems enable real‐time adjustments of treatment plans based on the latest patient anatomy, creating an urgent need for accurate and rapid dose calculation algorithms. Traditional CT‐based dose calculations and ray‐tracing (RT) processes are time‐consuming and may not be feasible for the online adaptive workflow required in MRgART. Recent advancements in deep learning (DL) offer promising solutions to overcome these limitations. Purpose This study aims to develop a DL‐based dose calculation engine for MRgART that relies solely on MR images. This approach addresses the critical need for accurate and rapid dose calculations in the MRgART workflow without relying on CT images or time‐consuming RT processes. Methods We used a deep residual network inspired by U‐Net to establish a direct connection between distance‐corrected conical (DCC) fluence maps and dose distributions in the image domain. The study utilized data from 30 prostate cancer patients treated with fixed‐beam Intensity‐Modulated Radiation Therapy (IMRT) on an MR‐guided LINAC system. We trained, validated, and tested the model using a total of 120 online treatment plans, which encompassed 1080 individual beams. We extensively evaluated the network's performance by comparing its dose calculation accuracy against Monte Carlo (MC)‐based methods using metrics such as mean absolute error (MAE) of pixel‐wise dose differences, 3D gamma analysis, dose‐volume histograms (DVHs), dosimetric indices, and isodose line similarity. Results The proposed DL model demonstrated high accuracy in dose calculations. The median MAE of pixel‐wise dose differences was 1.2% for the whole body, 1.9% for targets, and 1.1% for organs at risk (OARs). The median 3D gamma passing rates for the 3%/3 mm criterion were 94.8% for the whole body, 95.7% for targets, and 98.7% for OARs. Additionally, the Dice similarity coefficient (DSC) of isodose lines between the DL‐based and MC‐based dose calculations averaged 0.94 ± 0.01. There were no big differences between the DL‐based and MC‐based calculations in the DVH curves and clinical dosimetric indices. This proved that the two methods were clinically equivalent. Conclusion This study presents a novel MR‐only dose calculation engine that eliminates the need for CT images and complex RT processes. By leveraging DL, the proposed method significantly enhances the efficiency and accuracy of the MRgART workflow, particularly for prostate cancer treatment. This approach holds potential for broader applications across different cancer types and MR‐linac systems, paving the way for more streamlined and precise radiation therapy planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助科研通管家采纳,获得10
6秒前
HJJHJH应助科研通管家采纳,获得30
6秒前
Orange应助科研通管家采纳,获得10
6秒前
18秒前
20秒前
20秒前
星星泡饭完成签到,获得积分10
22秒前
24秒前
星星泡饭发布了新的文献求助10
25秒前
anqi6688发布了新的文献求助10
27秒前
烁果累累发布了新的文献求助10
31秒前
搜集达人应助anqi6688采纳,获得10
36秒前
justin完成签到,获得积分10
44秒前
jyy完成签到,获得积分10
45秒前
justin发布了新的文献求助10
48秒前
51秒前
Wonder完成签到,获得积分10
55秒前
1分钟前
你好完成签到 ,获得积分0
1分钟前
搜集达人应助十you八九采纳,获得10
1分钟前
GL发布了新的文献求助10
1分钟前
1分钟前
哈贝喵完成签到,获得积分10
1分钟前
一口辰发布了新的文献求助10
1分钟前
LOKL完成签到,获得积分20
1分钟前
欣慰外套完成签到 ,获得积分10
1分钟前
1分钟前
Hey完成签到 ,获得积分10
1分钟前
wlei完成签到,获得积分10
1分钟前
科研通AI5应助GL采纳,获得100
1分钟前
十you八九发布了新的文献求助10
1分钟前
1分钟前
李健的小迷弟应助Mrhope采纳,获得10
1分钟前
冷风完成签到 ,获得积分10
1分钟前
三岁完成签到 ,获得积分10
1分钟前
1分钟前
一口辰完成签到 ,获得积分10
1分钟前
bkagyin应助十you八九采纳,获得10
1分钟前
超帅妙竹完成签到,获得积分10
1分钟前
思源应助圆圆努力中采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4483868
求助须知:如何正确求助?哪些是违规求助? 3939812
关于积分的说明 12219963
捐赠科研通 3595199
什么是DOI,文献DOI怎么找? 1977136
邀请新用户注册赠送积分活动 1014243
科研通“疑难数据库(出版商)”最低求助积分说明 907331