Active and Transfer Learning of High-Dimensional Neural Network Potentials for Transition Metals

灵活性(工程) 工作流程 材料科学 多尺度建模 计算机科学 分子动力学 纳米技术 化学 计算化学 数学 数据库 统计
作者
Bilvin Varughese,Sukriti Manna,Troy D. Loeffler,Rohit Batra,Mathew J. Cherukara,Subramanian K. R. S. Sankaranarayanan
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (16): 20681-20692 被引量:5
标识
DOI:10.1021/acsami.3c15399
摘要

Classical molecular dynamics (MD) simulations represent a very popular and powerful tool for materials modeling and design. The predictive power of MD hinges on the ability of the interatomic potential to capture the underlying physics and chemistry. There have been decades of seminal work on developing interatomic potentials, albeit with a focus predominantly on capturing the properties of bulk materials. Such physics-based models, while extensively deployed for predicting the dynamics and properties of nanoscale systems over the past two decades, tend to perform poorly in predicting nanoscale potential energy surfaces (PESs) when compared to high-fidelity first-principles calculations. These limitations stem from the lack of flexibility in such models, which rely on a predefined functional form. Machine learning (ML) models and approaches have emerged as a viable alternative to capture the diverse size-dependent cluster geometries, nanoscale dynamics, and the complex nanoscale PESs, without sacrificing the bulk properties. Here, we introduce an ML workflow that combines transfer and active learning strategies to develop high-dimensional neural networks (NNs) for capturing the cluster and bulk properties for several different transition metals with applications in catalysis, microelectronics, and energy storage, to name a few. Our NN first learns the bulk PES from the high-quality physics-based models in literature and subsequently augments this learning via retraining with a higher-fidelity first-principles training data set to concurrently capture both the nanoscale and bulk PES. Our workflow departs from status-quo in its ability to learn from a sparsely sampled data set that nonetheless covers a diverse range of cluster configurations from near-equilibrium to highly nonequilibrium as well as learning strategies that iteratively improve the fingerprinting depending on model fidelity. All the developed models are rigorously tested against an extensive first-principles data set of energies and forces of cluster configurations as well as several properties of bulk configurations for 10 different transition metals. Our approach is material agnostic and provides a methodology to transfer and build upon the learnings from decades of seminal work in molecular simulations on to a new generation of ML-trained potentials to accelerate materials discovery and design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
研友_LNMbk8完成签到,获得积分10
2秒前
科研通AI6应助yixiaolou采纳,获得10
2秒前
怡然的乌发布了新的文献求助10
2秒前
科研通AI6应助复杂棒球采纳,获得10
2秒前
3秒前
3秒前
5秒前
5秒前
乔治发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
健壮芷珍完成签到,获得积分10
6秒前
共享精神应助加勒比海带采纳,获得10
6秒前
yara完成签到 ,获得积分10
6秒前
快乐冰淇淋完成签到,获得积分10
6秒前
机灵一手发布了新的文献求助10
7秒前
科研通AI6应助不枯萎的花采纳,获得10
7秒前
方小晓发布了新的文献求助10
8秒前
9秒前
清秋发布了新的文献求助10
10秒前
10秒前
zzww发布了新的文献求助10
11秒前
11秒前
斯文败类应助王碱采纳,获得10
11秒前
自由滑大王完成签到 ,获得积分10
12秒前
可爱的函函应助内向冰绿采纳,获得10
14秒前
14秒前
15秒前
15秒前
15秒前
共享精神应助激昂的夏槐采纳,获得10
15秒前
16秒前
17秒前
17秒前
17秒前
灵巧鑫发布了新的文献求助10
18秒前
18秒前
共享精神应助yuyuyuyu采纳,获得30
18秒前
西粤学发布了新的文献求助20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533094
求助须知:如何正确求助?哪些是违规求助? 4621559
关于积分的说明 14578975
捐赠科研通 4561617
什么是DOI,文献DOI怎么找? 2499392
邀请新用户注册赠送积分活动 1479257
关于科研通互助平台的介绍 1450500