SIGMA-DF: Single-Side Guided Meta-Learning for Deepfake Detection

计算机科学 领域(数学分析) 嵌入 人工智能 元学习(计算机科学) 西格玛 机器学习 班级(哲学) 模式识别(心理学) 数学 量子力学 物理 数学分析 经济 管理 任务(项目管理)
作者
Bing Han,Jianshu Li,Wenqi Ren,Man Luo,Jian Liu,Xiaochun Cao
标识
DOI:10.1145/3591106.3592282
摘要

The current challenge of Deepfake detection is the cross-domain performance on unseen Deepfake data. Instead of extracting forgery artifacts that are robust to the cross-domain scenarios as most previous works, we propose a novel method named Single-sIde Guided Meta-leArning framework for DeepFake detection (SIGMA-DF) which simulates the cross-domain scenarios during training by synthesizing virtual testing domain through meta-learning. In addition, SIGMA-DF integrates the meta-learning algorithm with a new ensemble meta-learning framework, which separately trains multiple meta-learners in the meta-train phase to aggregate multiple domain shifts in each iteration. Hence multiple cross-domain scenarios are simulated, better leveraging the domain knowledge. In addition, considering the contribution of hard samples in single-side distribution optimization, a novel weighted single-side loss function is proposed to only narrow the intra-class distance between real faces and enlarge the inter-class distance for both real and fake faces in embedding space with the awareness of sample weights. Extensive experiments are conducted on several standard Deepfake detection datasets to demonstrate that the proposed SIGMA-DF achieves state-of-the-art performance. In particular, in the cross-domain evaluation from FF++ to Celeb-DF and DFDC, our SIGMA-DF outperforms the baselines by 4.4% and 4.5% in terms of AUC, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
淡淡宛完成签到 ,获得积分10
1秒前
不会搞科研完成签到,获得积分0
2秒前
Barry完成签到,获得积分10
2秒前
丘比特应助Lina采纳,获得10
2秒前
3秒前
Ava应助迷路静曼采纳,获得10
3秒前
喜悦宫苴应助学习爱我采纳,获得10
3秒前
鸣蜩阿六完成签到,获得积分10
3秒前
Quena发布了新的文献求助10
3秒前
木杉发布了新的文献求助30
3秒前
科研通AI5应助疯猴子果汁采纳,获得10
3秒前
潘宋完成签到,获得积分10
3秒前
3秒前
似水流年发布了新的文献求助10
3秒前
jywang发布了新的文献求助10
3秒前
4秒前
小刘完成签到,获得积分10
5秒前
欢欢完成签到,获得积分10
5秒前
冬瓜完成签到,获得积分10
5秒前
小鲤瑜跃龙门完成签到,获得积分10
5秒前
小枫5977完成签到 ,获得积分10
7秒前
7秒前
欢欢发布了新的文献求助10
8秒前
dahuihui完成签到,获得积分20
8秒前
9秒前
xxxx完成签到,获得积分20
9秒前
狒狒爱学习完成签到,获得积分10
9秒前
10秒前
10秒前
科研通AI5应助王天一采纳,获得10
10秒前
铜墙铁壁完成签到,获得积分10
10秒前
10秒前
10秒前
Yanfei发布了新的文献求助30
11秒前
Makarena完成签到,获得积分10
11秒前
11秒前
11秒前
细心夏槐完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812032
求助须知:如何正确求助?哪些是违规求助? 3356480
关于积分的说明 10382030
捐赠科研通 3073584
什么是DOI,文献DOI怎么找? 1688326
邀请新用户注册赠送积分活动 812097
科研通“疑难数据库(出版商)”最低求助积分说明 766947