亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DETDO: An adaptive hybrid dandelion optimizer for engineering optimization

数学优化 初始化 局部最优 数学 差异进化 计算机科学 算法 程序设计语言
作者
Gang Hu,Yixuan Zheng,Laith Abualigah,Abdelazim G. Hussien
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:57: 102004-102004 被引量:153
标识
DOI:10.1016/j.aei.2023.102004
摘要

Dandelion Optimizer (DO) is a recently proposed swarm intelligence algorithm that coincides with the process of finding the best reproduction site for dandelion seeds. Compared with the classical Meta-heuristic algorithms, DO exhibits strong competitiveness, but it also has some drawbacks. In this paper, we proposed an adaptive hybrid dandelion optimizer called DETDO by combining three strategies of adaptive tent chaotic mapping, differential evolution (DE) strategy, and adaptive t-distribution perturbation to address the shortcomings of weak DO development, easy to fall into local optimum and slow convergence speed. Firstly, the adaptive tent chaos mapping is used in the initialization phase to obtain a uniformly distributed high-quality initial population, which helps the algorithm to enter the correct search region quickly. Secondly, the DE strategy is introduced to increase the diversity of dandelion populations to avoid algorithm stagnation, which improves the exploitation capability and the accuracy of the optimal solution. Finally, adaptive t-distribution perturbation around the elite solution successfully balances the exploration and exploitation phases while improving the convergence speed through a reasonable conversion from Cauchy to Gaussian distribution. The proposed DETDO is compared with classical or advanced optimization algorithms on CEC2017 and CEC2019 test sets, and the experimental results and statistical analysis demonstrate that the algorithm has better optimization accuracy and speed. In addition, DETDO has obtained the best results in solving six real-world engineering design problems. Finally, DETDO is applied to two bar topology optimization cases. Under a series of complex constraints, DETDO produces a lighter bar structure than the current scheme. It further illustrates the effectiveness and applicability of DETDO in practical problems. The above results mean that DETDO with strong competitiveness will become a preferred swarm intelligence algorithm to cope with optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ComeOn发布了新的文献求助10
1秒前
Akim应助豌豆采纳,获得10
7秒前
当时只道是寻常完成签到,获得积分10
7秒前
13秒前
Inuit发布了新的文献求助10
13秒前
momo完成签到 ,获得积分10
19秒前
ComeOn发布了新的文献求助10
21秒前
22秒前
李崋壹完成签到 ,获得积分10
23秒前
李爱国应助单薄天宇采纳,获得30
25秒前
小马甲应助小乔采纳,获得10
30秒前
王勇完成签到,获得积分10
32秒前
独特天问发布了新的文献求助10
33秒前
Inuit完成签到,获得积分10
35秒前
42秒前
独特天问完成签到,获得积分10
43秒前
残幻应助breeze采纳,获得10
48秒前
jyy应助心之所向878采纳,获得10
51秒前
54秒前
追寻绮玉完成签到,获得积分10
54秒前
单薄天宇发布了新的文献求助30
1分钟前
VV2001完成签到,获得积分10
1分钟前
超级不惜发布了新的文献求助150
1分钟前
笑笑完成签到 ,获得积分10
1分钟前
超级不惜完成签到 ,获得积分10
1分钟前
1分钟前
cc完成签到 ,获得积分10
1分钟前
breeze完成签到,获得积分10
1分钟前
202200362009发布了新的文献求助30
1分钟前
深情安青应助dlll采纳,获得10
1分钟前
哭泣的赛凤完成签到 ,获得积分10
1分钟前
隐形曼青应助2R采纳,获得10
1分钟前
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
李洁发布了新的文献求助10
1分钟前
大模型应助李洁采纳,获得10
1分钟前
甜蜜水蜜桃完成签到 ,获得积分10
1分钟前
阿泽完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784786
求助须知:如何正确求助?哪些是违规求助? 3330050
关于积分的说明 10244018
捐赠科研通 3045312
什么是DOI,文献DOI怎么找? 1671626
邀请新用户注册赠送积分活动 800524
科研通“疑难数据库(出版商)”最低求助积分说明 759465