血管生成
下调和上调
卵巢癌
癌症研究
血管内皮生长因子A
贝伐单抗
小RNA
生物
癌症
医学
血管内皮生长因子
内科学
化疗
基因
生物化学
血管内皮生长因子受体
作者
Taro Yagi,Kenjiro Sawada,Mayuko Miyamoto,Aasa Shimizu,Yukako Oi,Aska Toda,Koji Nakamura,Yasuto Kinose,Michiko Kodama,Kae Hashimoto,Tadashi Kimura
标识
DOI:10.1158/1541-7786.mcr-23-0015
摘要
Abstract Although bevacizumab (BEV) plays a key role in ovarian cancer treatment, BEV resistance is often observed in clinical settings. This study aimed to identify the genes responsible for BEV resistance. C57BL/6 mice inoculated with ID-8 murine ovarian cancer cells were treated with anti-VEGFA antibody or IgG (control) twice weekly for 4 weeks. The mice were sacrificed, then, RNA was extracted from the disseminated tumors. qRT-PCR assays were performed to identify angiogenesis-related genes and miRNAs that were altered by anti-VEGFA treatment. SERPINE1/PAI-1 was found to be upregulated during BEV treatment. Therefore, we focused on miRNAs to elucidate the mechanism underlying the upregulation of PAI-1 during BEV treatment. Kaplan–Meier plotter analysis revealed that higher expression levels of SERPINE1/PAI-1 were associated with poor prognoses among BEV-treated patients, suggesting that SERPINE1/PAI may be involved in the acquisition of BEV resistance. miRNA microarray analysis followed by in silico and functional assays revealed that miR-143-3p targeted SERPINE1 and negatively regulated PAI-1 expression. The transfection of miR-143-3p suppressed PAI-1 secretion from ovarian cancer cells and inhibited in vitro angiogenesis in HUVECs. Next, miR-143-3p-overexpressing ES2 cells were intraperitoneally injected into BALB/c nude mice. ES2-miR-143-3p cells downregulated PAI-1 production, attenuated angiogenesis, and significantly inhibited intraperitoneal tumor growth following treatment with anti-VEGFA antibody. Continuous anti-VEGFA treatment downregulated miR-143-3p expression, which upregulated PAI-1 and activated an alternative angiogenic pathway in ovarian cancer. In conclusion, the substitution of this miRNA during BEV treatment may help overcome BEV resistance, and this may be used as a novel treatment strategy in clinical settings. Implications: Continuous administration of VEGFA antibody upregulates SERPINE1/PAI-1 expression via the downregulation of miR-143-3p, which contributes to acquiring bevacizumab resistance in ovarian cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI