Deep Semantic-Aware Proxy Hashing for Multi-Label Cross-Modal Retrieval

计算机科学 散列函数 语义鸿沟 人工智能 情态动词 数据挖掘 特征学习 模式识别(心理学) 情报检索 图像检索 图像(数学) 计算机安全 化学 高分子化学
作者
Yadong Huo,Qibing Qin,Jiangyan Dai,Lei Wang,Wenfeng Zhang,Lei Huang,Chengduan Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (1): 576-589 被引量:21
标识
DOI:10.1109/tcsvt.2023.3285266
摘要

Deep hashing has attracted broad interest in cross-modal retrieval because of its low cost and efficient retrieval benefits. To capture the semantic information of raw samples and alleviate the semantic gap, supervised cross-modal hashing methods that utilize label information which could map raw samples from different modalities into a unified common space, are proposed. Although making great progress, existing deep cross-modal hashing methods are suffering from some problems, such as: 1) considering multi-label cross-modal retrieval, proxy-based methods ignore the data-to-data relations and fail to explore the combination of the different categories profoundly, which could lead to some samples without common categories being embedded in the vicinity; 2) for feature representation, image feature extractors containing multiple convolutional layers cannot fully obtain global information of images, which results in the generation of sub-optimal binary hash codes. In this paper, by extending the proxy-based mechanism to multi-label cross-modal retrieval, we propose a novel Deep Semantic-aware Proxy Hashing (DSPH) framework, which could embed multi-modal multi-label data into a uniform discrete space and capture fine-grained semantic relations between raw samples. Specifically, by learning multi-modal multi-label proxy terms and multi-modal irrelevant terms jointly, the semantic-aware proxy loss is designed to capture multi-label correlations and preserve the correct fine-grained similarity ranking among samples, alleviating inter-modal semantic gaps. In addition, for feature representation, two transformer encoders are proposed as backbone networks for images and text, respectively, in which the image transformer encoder is introduced to obtain global information of the input image by modeling long-range visual dependencies. We have conducted extensive experiments on three baseline multi-label datasets, and the experimental results show that our DSPH framework achieves better performance than state-of-the-art cross-modal hashing methods. The code for the implementation of our DSPH framework is available at https://github.com/QinLab-WFU/DSPH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
caisongliang发布了新的文献求助10
2秒前
zyc发布了新的文献求助10
3秒前
小羊子发布了新的文献求助10
3秒前
4秒前
赘婿应助懒羊羊采纳,获得10
5秒前
云不暇完成签到 ,获得积分10
6秒前
三三发布了新的文献求助10
7秒前
8秒前
胖达完成签到,获得积分10
8秒前
满意沛槐完成签到 ,获得积分10
8秒前
believe发布了新的文献求助10
13秒前
在水一方应助Phaiane采纳,获得100
14秒前
科研通AI5应助猩心采纳,获得10
15秒前
16秒前
yuni完成签到,获得积分10
17秒前
18秒前
18秒前
20秒前
imomoe完成签到,获得积分10
20秒前
22秒前
22秒前
lalala驳回了顾矜应助
22秒前
迷人素完成签到 ,获得积分10
23秒前
23秒前
Orange应助yeyeyeye采纳,获得10
23秒前
刘鹏宇发布了新的文献求助10
24秒前
HH完成签到,获得积分10
25秒前
科研通AI5应助堪曼凝采纳,获得10
25秒前
猩心发布了新的文献求助10
26秒前
kingwill应助weimei采纳,获得20
27秒前
27秒前
李爱国应助李悟尔采纳,获得10
28秒前
十一发布了新的文献求助10
29秒前
得失心的诅咒完成签到 ,获得积分10
29秒前
30秒前
suansuan完成签到,获得积分10
31秒前
小吕小吕发布了新的文献求助10
32秒前
believe完成签到,获得积分10
33秒前
华仔应助yyy采纳,获得10
36秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842910
求助须知:如何正确求助?哪些是违规求助? 3384948
关于积分的说明 10538145
捐赠科研通 3105498
什么是DOI,文献DOI怎么找? 1710345
邀请新用户注册赠送积分活动 823598
科研通“疑难数据库(出版商)”最低求助积分说明 774157