Predicting Compressive and Splitting Tensile Strengths of Silica Fume Concrete Using M5P Model Tree Algorithm

硅粉 极限抗拉强度 均方误差 相关系数 抗压强度 决定系数 算法 线性回归 参数统计 计算机科学 结构工程 近似误差 统计 数学 材料科学 工程类 机器学习 复合材料
作者
Hammad Ahmed Shah,Moncef L. Nehdi,Muhammad Imtiaz Khan,Usman Akmal,Hisham Alabduljabbar,Abdullah Mohamed,Muhammad Sheraz
出处
期刊:Materials [MDPI AG]
卷期号:15 (15): 5436-5436 被引量:23
标识
DOI:10.3390/ma15155436
摘要

Compressive strength (CS) and splitting tensile strength (STS) are paramount parameters in the design of reinforced concrete structures and are required by pertinent standard provisions. Robust prediction models for these properties can save time and cost by reducing the number of laboratory trial batches and experiments needed to generate suitable design data. Silica fume (SF) is often used in concrete owing to its substantial enhancements of the engineering properties of concrete and its environmental benefits. In the present study, the M5P model tree algorithm was used to develop models for the prediction of the CS and STS of concrete incorporating SF. Accordingly, large databases comprising 796 data points for CS and 156 data records for STS were compiled from peer-reviewed published literature. The predictions of the M5P models were compared with linear regression analysis and gene expression programming. Different statistical metrics, including the coefficient of determination, correlation coefficient, root mean squared error, mean absolute error, relative squared error, and discrepancy ratio, were deployed to appraise the performance of the developed models. Moreover, parametric analysis was carried out to investigate the influence of different input parameters, such as the SF content, water-to-binder ratio, and age of the specimen, on the CS and STS. The trained models offer a rapid and accurate tool that can assist the designer in the effective proportioning of silica fume concrete.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
5秒前
浅色凉生完成签到,获得积分10
5秒前
XushengZhang发布了新的文献求助10
7秒前
徐rl完成签到 ,获得积分10
8秒前
浮游应助浅色凉生采纳,获得10
9秒前
candy完成签到,获得积分10
9秒前
12秒前
silencer完成签到 ,获得积分10
13秒前
ZJY完成签到 ,获得积分10
13秒前
土书发布了新的文献求助10
13秒前
xz完成签到 ,获得积分10
14秒前
小情绪完成签到,获得积分10
16秒前
16秒前
bbhk完成签到,获得积分10
17秒前
18秒前
开心的小熊猫完成签到,获得积分10
22秒前
加油发布了新的文献求助10
24秒前
Mer_Mer发布了新的文献求助10
24秒前
XushengZhang完成签到,获得积分10
29秒前
小刺猬完成签到,获得积分10
30秒前
30秒前
pluto应助林冬冬采纳,获得10
30秒前
孤独的哈密瓜数据线完成签到 ,获得积分10
30秒前
30秒前
YY完成签到 ,获得积分10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
One应助科研通管家采纳,获得10
31秒前
顾矜应助科研通管家采纳,获得10
31秒前
Ava应助科研通管家采纳,获得30
31秒前
niNe3YUE应助科研通管家采纳,获得10
31秒前
传奇3应助科研通管家采纳,获得10
31秒前
田様应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
31秒前
所所应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
天天快乐应助科研通管家采纳,获得10
31秒前
Akim应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5559718
求助须知:如何正确求助?哪些是违规求助? 4644818
关于积分的说明 14673657
捐赠科研通 4586030
什么是DOI,文献DOI怎么找? 2516086
邀请新用户注册赠送积分活动 1489883
关于科研通互助平台的介绍 1460801