Integrating heterogeneous structures and community semantics for unsupervised community detection in heterogeneous networks

计算机科学 语义学(计算机科学) 异构网络 聚类分析 非负矩阵分解 人工智能 无监督学习 数据挖掘 理论计算机科学 矩阵分解 电信 特征向量 无线网络 物理 量子力学 无线 程序设计语言
作者
Yan Zhao,Weimin Li,Fangfang Liu,Jingchao Wang,Alex Munyole Luvembe
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121821-121821 被引量:1
标识
DOI:10.1016/j.eswa.2023.121821
摘要

Community detection aims to discover hidden communities or groups in complex networks and is essentially unsupervised clustering behavior. However, most of the existing unsupervised methods are designed for homogeneous networks; therefore, they cannot effectively handle heterogeneous structures and rich semantic information. Under such a situation, it is difficult to accurately detect communities in heterogeneous networks that better reflect the real world. Therefore, this work aims to design an unsupervised framework to fuse heterogeneous structure information and interpret the rich semantics of the network in the form of community semantics. Thus, a heterogeneous network community detection method, called HAESF, is introduced. It includes two modules: the Heterogeneous Auto Encoder (HAE) and the Semantic Factorization (SF) modules. In more detail, the HAE module adopts a hierarchical attention scheme to represent and aggregate the heterogeneous structure of the network. And it proposes the concept of heterogeneous information combinatorial graphs for structural reconstruction to achieve unsupervised detection. Concerning the SF module, it focuses on learning the semantic information in the network from the community point of view. It uses nonnegative matrix factorization to decompose the network features for obtaining community semantics. Once both modules are implemented, the objective of restricting community segmentation based on these semantics is achieved. The constraint is based on community semantic homogeneity to correct inaccurate node delineation. Furthermore, to improve the algorithm efficiency, a unified framework is designed to optimize the HAE and SF modules jointly. Within this new framework, the SF loss is innovatively used as a judgmental loss for selective segmentation optimizations, helping to obtain more reliable community detection results. As for the results, extensive experiments are performed on three public datasets. The findings show that HAESF outperforms the other popular unsupervised methods, where the composite score of HAESF is 11.73% ahead of the next best, demonstrating the proposed method’s effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Sunday采纳,获得10
3秒前
6秒前
一只羊完成签到 ,获得积分10
9秒前
liguanyu1078完成签到,获得积分10
9秒前
Expelliarmus发布了新的文献求助10
10秒前
11秒前
一只盒子完成签到,获得积分20
17秒前
孙振亚发布了新的文献求助10
17秒前
17秒前
乐乐应助姚芭蕉采纳,获得10
21秒前
精明尔曼完成签到,获得积分10
23秒前
燕子发布了新的文献求助10
24秒前
孙振亚完成签到,获得积分10
24秒前
28秒前
28秒前
山水之乐发布了新的文献求助10
32秒前
万能图书馆应助年年采纳,获得10
32秒前
32秒前
cdercder应助科研通管家采纳,获得10
33秒前
zll发布了新的文献求助10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
cdercder应助科研通管家采纳,获得10
33秒前
33秒前
月亮与六便士完成签到 ,获得积分10
35秒前
赵李锋完成签到,获得积分10
36秒前
sxp1031发布了新的文献求助10
37秒前
复杂的板凳完成签到,获得积分10
38秒前
38秒前
Alex完成签到,获得积分10
40秒前
66发完成签到,获得积分10
41秒前
Misea发布了新的文献求助10
43秒前
27小天使应助姚芭蕉采纳,获得10
49秒前
50秒前
妥妥酱完成签到,获得积分10
52秒前
jnoker完成签到 ,获得积分10
53秒前
顾矜应助Misea采纳,获得10
54秒前
nanda完成签到,获得积分0
54秒前
走着完成签到,获得积分10
1分钟前
直率的钢铁侠完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779725
求助须知:如何正确求助?哪些是违规求助? 3325161
关于积分的说明 10221707
捐赠科研通 3040293
什么是DOI,文献DOI怎么找? 1668715
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758535