已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The effects of fusion-based feature extraction for fabric defect classification

人工智能 特征提取 模式识别(心理学) 计算机科学 支持向量机 人工神经网络 特征(语言学) 卷积神经网络 冗余(工程) 机器学习 哲学 语言学 操作系统
作者
Fatma Günseli Yaşar Çıklaçandır,Semih Utku,Hakan Özdemir
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:93 (23-24): 5448-5460 被引量:3
标识
DOI:10.1177/00405175231188535
摘要

Image processing has been employed in a variety of fields since the advent of image processing techniques. One of these fields is textiles. The existence of any defect in a fabric is one of the most important factors affecting the quality of the fabric. There are many types of fabric defects that can occur for various reasons. It is critical to figure out what caused the defect and fix it so that it does not occur again. Automation of fabric defect detection has recently attracted a great deal of interest in view of the development in artificial intelligence technology to be able to discover defects with a high degree of success and to limit the harm to the manufacturer. This study focuses on analyzing different feature extraction methods and different classifiers and discussing the advantages/disadvantages of the combinations and, unlike other studies, using feature fusion for feature extraction. Different cases have been created that handle fabric datasets from different angles and apply different methods of feature extraction (convolution neural network, minimum relevance and maximum redundancy) and classification (ensemble learning (EL), k-nearest neighbor, support vector machine (SVM)) for separating defected and un-defected patterned and un-patterned fabrics. ResNet18 is the convolution neural network-based model with the highest performance in feature extraction, while EL and the SVM allow us to achieve close and highly successful results in classification. When feature fusion is used, ResNet18 & GoogLeNet & SVM is the most successful combination compared to the others (94.66%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shiyu发布了新的文献求助10
1秒前
2秒前
MaxKim发布了新的文献求助10
3秒前
4秒前
yu完成签到 ,获得积分10
4秒前
5秒前
细心语琴完成签到,获得积分10
5秒前
橙子发布了新的文献求助10
5秒前
6秒前
后陡门爱神完成签到 ,获得积分10
7秒前
8秒前
领导范儿应助老迟的新瑶采纳,获得10
9秒前
傲娇的笑白完成签到 ,获得积分10
10秒前
Chris完成签到 ,获得积分0
10秒前
hkzda发布了新的文献求助10
12秒前
哈哈嘿发布了新的文献求助100
12秒前
科目三应助king采纳,获得10
14秒前
科研通AI6应助xkuz采纳,获得10
15秒前
深情安青应助体验服采纳,获得10
18秒前
陈希雅完成签到,获得积分20
19秒前
冷酷哈密瓜完成签到,获得积分10
19秒前
磊少完成签到,获得积分10
21秒前
zhurui完成签到 ,获得积分10
27秒前
司空元正完成签到 ,获得积分10
31秒前
32秒前
uranus完成签到,获得积分10
33秒前
草木完成签到 ,获得积分10
35秒前
在水一方完成签到 ,获得积分10
36秒前
36秒前
我是老大应助微光熠采纳,获得10
38秒前
筑梦之鱼完成签到,获得积分10
39秒前
www完成签到 ,获得积分10
40秒前
aowulan完成签到 ,获得积分10
41秒前
41秒前
wlp鹏完成签到,获得积分10
42秒前
橙子完成签到 ,获得积分10
44秒前
兮兮完成签到 ,获得积分10
47秒前
匿名网友发布了新的文献求助10
47秒前
机灵的衬衫完成签到 ,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5030136
求助须知:如何正确求助?哪些是违规求助? 4265369
关于积分的说明 13297477
捐赠科研通 4074048
什么是DOI,文献DOI怎么找? 2228275
邀请新用户注册赠送积分活动 1236971
关于科研通互助平台的介绍 1161225