Coffee authentication via targeted metabolomics and machine learning: Unveiling origins and their discriminating biochemicals

随机森林 代谢组学 人工智能 机器学习 化学 线性判别分析 偏最小二乘回归 特征选择 掺假者 计算机科学 色谱法
作者
Fawzan Sigma Aurum,Muhammad Zukhrufuz Zaman,Edi Purwanto,Danar Praseptiangga,K. Nakano
出处
期刊:Food bioscience [Elsevier BV]
卷期号:56: 103122-103122 被引量:5
标识
DOI:10.1016/j.fbio.2023.103122
摘要

Coffee is an export commodity that is prone to fraudulent practices. Therefore, this study presents a novel approach to authenticate coffee origins using targeted metabolomics with gas chromatography-tandem mass spectrometry (GC-MS/MS) and machine learning models. A total of 200 coffee samples from different harvest years and areas from Indonesia were extracted using the derivatisation method and then analysed for their metabolite profiles. Several supervised machine-learning models were tested to classify coffee origins and discover their potential markers. The study found various metabolite features spanning diverse chemical classes, encompassing sugar alcohols, carbohydrates, amino acids, organic acids, fatty acids, and phenols. Random forest (RF) and partial least squares discriminant analysis (PLS-DA) were among the most accurate models in predicting the origin of coffee from several classes in the validation dataset. The accuracy of both models is in the range of 91%–100%. Furthermore, this study proposes a new strategy for determining "intersection features" as the set of features that are important and common to both RF and PLS-DA models, thereby providing a robust selection of coffee origin markers. Overall, the approach and findings of this study have far-reaching implications for coffee authentication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助JC采纳,获得10
刚刚
1秒前
1秒前
aaa发布了新的文献求助10
2秒前
香蕉觅云应助Azer采纳,获得10
2秒前
冷酷太清完成签到,获得积分10
2秒前
2秒前
糖须臾发布了新的文献求助10
4秒前
王滕发布了新的文献求助10
6秒前
6秒前
6秒前
李小伟发布了新的文献求助10
6秒前
默默的甜瓜完成签到,获得积分10
7秒前
脑洞疼应助活力的天空采纳,获得10
7秒前
SiqinXie发布了新的文献求助10
7秒前
8秒前
核平铀善完成签到,获得积分10
8秒前
yiling发布了新的文献求助30
9秒前
CAOHOU应助使用过有几个采纳,获得10
10秒前
唐唐的猫咪完成签到 ,获得积分10
10秒前
11秒前
顺顺利利发布了新的文献求助10
11秒前
qian完成签到 ,获得积分10
11秒前
平成的怪物完成签到,获得积分10
11秒前
33发布了新的文献求助10
12秒前
王滕完成签到,获得积分10
12秒前
肚子藤完成签到,获得积分10
13秒前
13秒前
852应助SiqinXie采纳,获得10
14秒前
14秒前
yiling完成签到,获得积分20
15秒前
15秒前
16秒前
无花果应助端庄的衬衫采纳,获得10
16秒前
17秒前
33完成签到,获得积分10
17秒前
17秒前
sciboy完成签到,获得积分10
18秒前
沉默寻凝完成签到,获得积分10
19秒前
20秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916010
求助须知:如何正确求助?哪些是违规求助? 3461580
关于积分的说明 10917761
捐赠科研通 3188442
什么是DOI,文献DOI怎么找? 1762662
邀请新用户注册赠送积分活动 852929
科研通“疑难数据库(出版商)”最低求助积分说明 793613