UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios

计算机科学 目标检测 人工智能 特征(语言学) 块(置换群论) 光学(聚焦) 最小边界框 骨干网 计算机视觉 基线(sea) 对象(语法) 实时计算 模式识别(心理学) 图像(数学) 计算机网络 哲学 语言学 物理 几何学 数学 海洋学 光学 地质学
作者
Gang Wang,Yanfei Chen,Pei An,Hanyu Hong,Jinghu Hu,Tiange Huang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (16): 7190-7190 被引量:362
标识
DOI:10.3390/s23167190
摘要

Unmanned aerial vehicle (UAV) object detection plays a crucial role in civil, commercial, and military domains. However, the high proportion of small objects in UAV images and the limited platform resources lead to the low accuracy of most of the existing detection models embedded in UAVs, and it is difficult to strike a good balance between detection performance and resource consumption. To alleviate the above problems, we optimize YOLOv8 and propose an object detection model based on UAV aerial photography scenarios, called UAV-YOLOv8. Firstly, Wise-IoU (WIoU) v3 is used as a bounding box regression loss, and a wise gradient allocation strategy makes the model focus more on common-quality samples, thus improving the localization ability of the model. Secondly, an attention mechanism called BiFormer is introduced to optimize the backbone network, which improves the model's attention to critical information. Finally, we design a feature processing module named Focal FasterNet block (FFNB) and propose two new detection scales based on this module, which makes the shallow features and deep features fully integrated. The proposed multiscale feature fusion network substantially increased the detection performance of the model and reduces the missed detection rate of small objects. The experimental results show that our model has fewer parameters compared to the baseline model and has a mean detection accuracy higher than the baseline model by 7.7%. Compared with other mainstream models, the overall performance of our model is much better. The proposed method effectively improves the ability to detect small objects. There is room to optimize the detection effectiveness of our model for small and feature-less objects (such as bicycle-type vehicles), as we will address in subsequent research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月半完成签到,获得积分10
1秒前
材料若饥完成签到,获得积分10
3秒前
Aiden完成签到,获得积分10
3秒前
咎青文完成签到,获得积分10
4秒前
shinen完成签到,获得积分10
6秒前
虚心茉莉完成签到,获得积分10
6秒前
默然的歌完成签到 ,获得积分10
8秒前
明亮无颜完成签到,获得积分10
9秒前
Jasper应助Liu丰采纳,获得10
9秒前
13秒前
拾石子完成签到 ,获得积分10
15秒前
demom完成签到 ,获得积分10
15秒前
陈永伟完成签到,获得积分10
16秒前
骑着蜗牛追导弹完成签到 ,获得积分10
16秒前
yj91完成签到 ,获得积分10
17秒前
123123完成签到 ,获得积分10
17秒前
17秒前
Nichols给liyu的求助进行了留言
17秒前
柑橘发布了新的文献求助10
17秒前
HK完成签到 ,获得积分10
18秒前
20秒前
流北爷完成签到,获得积分10
20秒前
Liu丰发布了新的文献求助10
20秒前
轩辕远航完成签到 ,获得积分10
20秒前
23秒前
Liu丰完成签到,获得积分10
24秒前
小刘哥加油完成签到 ,获得积分10
24秒前
25秒前
iceink完成签到,获得积分10
25秒前
Ysj完成签到,获得积分10
26秒前
JFP完成签到,获得积分10
28秒前
hyl发布了新的文献求助10
29秒前
Nostalgia发布了新的文献求助10
29秒前
时来运转发布了新的文献求助20
29秒前
Augusterny完成签到 ,获得积分10
31秒前
33秒前
aurora完成签到,获得积分10
34秒前
34秒前
正直的语蝶完成签到,获得积分20
34秒前
登山人完成签到,获得积分10
35秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728