Detection of fungal infection in apple using hyperspectral transformation of RGB images with kernel regression

人工智能 高光谱成像 RGB颜色模型 分量 数学 核(代数) 模式识别(心理学) 卷积神经网络 转化(遗传学) 随机森林 均方误差 统计 计算机科学 图像处理 生物 图像(数学) 彩色图像 基因 组合数学 生物化学
作者
Gongqin Zhu,Shouguo Zheng,Qingshan Xu,Mengqing Qiu,Haiyan Wang,Shizhuang Weng
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:206: 112570-112570 被引量:7
标识
DOI:10.1016/j.postharvbio.2023.112570
摘要

Fungal infections cause the considerable losses in apple production and quality. Given its ability to perceive external and internal characteristics, hyperspectral imaging (HSI) performs well in detecting fungal infections in apples. However, high cost, time-consuming operation, and complicated processing limit the widespread application of HSI. This study proposes a novel detection method, that uses the hyperspectral transformation (HT) of RGB images, for detecting fungal infection in apples. Wiener estimation, pseudo-inverse and kernel regression (KR) were adopted to perform HT to transform the responses of RGB images into pseudo reflectance spectra (PRS). And the effects of RGB responses, band ranges and spectral resolution were further discussed. KR obtained the optimal HT and the resultant PRS in the range of 400–1000 nm and with a resolution of approximately 2.5 nm were close to the original reflectance spectra of HSI with a mean root mean square error of 0.050, the mean relative error of 12.17 %, and peak signal-to-noise ratio of 72.66. The obtained PRS were then combined with machine learning to classify the category and degree of fungal infection in apple fruit. The best category recognition was obtained by random forest and PRS. The accuracy of the calibration set (ACCC), validation set (ACCV) and prediction set (ACCP) were 93.31 %, 80.95 % and 83.33 %, respectively. The best determinations of degree of infection by Botrytis cinerea and Rhizopus stolonifer were obtained using k-nearest neighbor, convolutional neural network and PRS, resulting in an ACCP of 90 % for each model. The proposed method achieved a convenient, low-cost, and accurate detection of fungal infection types and degree in apple fruit and is expected to be useful for analysing the quality of other agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明白将军发布了新的文献求助10
1秒前
Ava应助健壮小懒猪采纳,获得10
1秒前
浮游应助杨惠文采纳,获得10
1秒前
聪慧道罡完成签到,获得积分20
1秒前
WW完成签到,获得积分10
2秒前
呆萌芙蓉发布了新的文献求助10
2秒前
王鹏发布了新的文献求助10
2秒前
Darker发布了新的文献求助10
2秒前
灵巧的忻发布了新的文献求助10
3秒前
3秒前
ChatGDP_deepsuck完成签到,获得积分10
3秒前
爆米花应助小杨采纳,获得10
3秒前
tuanzi完成签到,获得积分10
3秒前
Bryce完成签到 ,获得积分10
3秒前
wenjing发布了新的文献求助10
4秒前
浮游应助messi采纳,获得10
4秒前
Orange应助尘屿采纳,获得10
4秒前
ZYJ发布了新的文献求助10
4秒前
4秒前
mnliao完成签到,获得积分10
5秒前
幸福胡萝卜完成签到,获得积分10
5秒前
6秒前
小张完成签到 ,获得积分10
7秒前
cooljj发布了新的文献求助10
7秒前
奶昔完成签到,获得积分10
7秒前
ll发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
所所应助Pursue采纳,获得10
8秒前
ro发布了新的文献求助10
8秒前
哔哩哔哩往上爬完成签到,获得积分10
8秒前
执着易绿完成签到,获得积分10
9秒前
9秒前
NICO关注了科研通微信公众号
9秒前
付晓阳发布了新的文献求助10
10秒前
丹dan完成签到,获得积分10
10秒前
知性的土豆完成签到,获得积分10
10秒前
11秒前
ZYC完成签到,获得积分10
11秒前
领导范儿应助羽毛采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068619
求助须知:如何正确求助?哪些是违规求助? 4290188
关于积分的说明 13366569
捐赠科研通 4109975
什么是DOI,文献DOI怎么找? 2250576
邀请新用户注册赠送积分活动 1255901
关于科研通互助平台的介绍 1188438