Self-supervised deep learning for joint 3D low-dose PET/CT image denoising

降噪 人工智能 计算机科学 模式识别(心理学) 噪音(视频) 监督学习 视频去噪 非本地手段 机器学习 人工神经网络 图像去噪 图像(数学) 对象(语法) 视频跟踪 多视点视频编码
作者
Feixiang Zhao,Dongfen Li,Rui Luo,Mingzhe Liu,Xin Jiang,Junjie Hu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107391-107391 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107391
摘要

Deep learning (DL)-based denoising of low-dose positron emission tomography (LDPET) and low-dose computed tomography (LDCT) has been widely explored. However, previous methods have focused only on single modality denoising, neglecting the possibility of simultaneously denoising LDPET and LDCT using only one neural network, i.e., joint LDPET/LDCT denoising. Moreover, DL-based denoising methods generally require plenty of well-aligned LD-normal-dose (LD-ND) sample pairs, which can be difficult to obtain. To this end, we propose a self-supervised two-stage training framework named MAsk-then-Cycle (MAC), to achieve self-supervised joint LDPET/LDCT denoising. The first stage of MAC is masked autoencoder (MAE)-based pre-training and the second stage is self-supervised denoising training. Specifically, we propose a self-supervised denoising strategy named cycle self-recombination (CSR), which enables denoising without well-aligned sample pairs. Unlike other methods that treat noise as a homogeneous whole, CSR disentangles noise into signal-dependent and independent noises. This is more in line with the actual imaging process and allows for flexible recombination of noises and signals to generate new samples. These new samples contain implicit constraints that can improve the network's denoising ability. Based on these constraints, we design multiple loss functions to enable self-supervised training. Then we design a CSR-based denoising network to achieve joint 3D LDPET/LDCT denoising. Existing self-supervised methods generally lack pixel-level constraints on networks, which can easily lead to additional artifacts. Before denoising training, we perform MAE-based pre-training to indirectly impose pixel-level constraints on networks. Experiments on an LDPET/LDCT dataset demonstrate its superiority over existing methods. Our method is the first self-supervised joint LDPET/LDCT denoising method. It does not require any prior assumptions and is therefore more robust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll发布了新的文献求助10
刚刚
米里迷路发布了新的文献求助10
刚刚
典雅的觅儿完成签到,获得积分10
刚刚
yan发布了新的文献求助10
3秒前
苏11完成签到,获得积分10
4秒前
善良的碧灵完成签到,获得积分10
5秒前
6秒前
木槿年完成签到,获得积分10
6秒前
苏11发布了新的文献求助10
6秒前
6秒前
酷波er应助临风采纳,获得10
6秒前
6秒前
C2完成签到 ,获得积分10
6秒前
7秒前
FFF发布了新的文献求助20
9秒前
9秒前
大模型应助6666采纳,获得10
10秒前
蚊蚊爱读书完成签到,获得积分0
11秒前
11秒前
若空完成签到 ,获得积分10
11秒前
hp发布了新的文献求助10
12秒前
silin发布了新的文献求助10
12秒前
香蕉觅云应助玖玖采纳,获得10
12秒前
你奈我何完成签到,获得积分10
13秒前
yan完成签到,获得积分10
13秒前
wanglan发布了新的文献求助10
13秒前
14秒前
小二郎应助论英雄采纳,获得30
14秒前
15秒前
16秒前
李爱国应助kiwi采纳,获得10
16秒前
可爱的函函应助0077采纳,获得10
17秒前
17秒前
18秒前
laurel完成签到,获得积分10
18秒前
18秒前
19秒前
Ava应助FFF采纳,获得10
20秒前
风吹麦田应助曹梓轩采纳,获得30
20秒前
落英还发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601020
求助须知:如何正确求助?哪些是违规求助? 4686584
关于积分的说明 14845029
捐赠科研通 4679502
什么是DOI,文献DOI怎么找? 2539154
邀请新用户注册赠送积分活动 1506042
关于科研通互助平台的介绍 1471253