FTM-GCN: A novel technique for gas concentration predicting in space with sensor nodes

图形 无线传感器网络 计算机科学 数据挖掘 网络拓扑 注意力网络 拓扑(电路) 实时计算 算法 生物系统 计算机网络 人工智能 理论计算机科学 数学 生物 组合数学
作者
Yanmei Zhang,Qingming Jiang,Min Xu,Yiyi Zhang,Jiefeng Liu,Pengfei Jia
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:399: 134830-134830 被引量:7
标识
DOI:10.1016/j.snb.2023.134830
摘要

Accurate and real-time prediction of gas concentrations is a critical component of intelligent prediction systems and holds significant importance for production safety and quality of life. However, due to the constraints of the network topology in gas sensor networks and the temporal nature of gas concentration variations, concentration prediction has always been considered a significant challenge. To simultaneously capture the spatiotemporal correlations in gas concentration data with spatiotemporal characteristics, this study proposes a fully-connected temporal multilayer graph convolutional network (FTM-GCN). This method combines multiple graph convolutional layers (MGC), fully connected layers, and gated recurrent units (GRU). FTM-GCN exhibits three prominent features: (1) It leverages MGC to learn the topology of gas sensor networks, enhancing the model's ability to graph data and capture spatial characteristics. MGC is incorporated to capture spatial features in the data. (2) GRU is employed to capture the dynamic changes in sensor network data and the temporal characteristics of the data. (3) Continuous fully-connected layers are introduced to enhance the model's performance. Experimental results demonstrate that FTM-GCN effectively captures the spatiotemporal correlations in spatiotemporal data across various prediction perspectives and outperforms GCN, GRU, T-GCN and STGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
young完成签到,获得积分10
1秒前
123发布了新的文献求助10
1秒前
1秒前
2秒前
缥缈纲发布了新的文献求助10
2秒前
山山而川发布了新的文献求助10
4秒前
银河打工人应助Jidekxin采纳,获得10
5秒前
ZhouYW应助柠檬采纳,获得10
6秒前
北海应助虫子采纳,获得10
6秒前
李健应助盖伊福克斯采纳,获得10
6秒前
科研通AI5应助淡定采纳,获得10
7秒前
7秒前
7秒前
8秒前
10秒前
10秒前
夏冰应助shangx采纳,获得10
10秒前
mufeixue发布了新的文献求助10
10秒前
young发布了新的文献求助10
11秒前
铎幸福应助毒蛇如我采纳,获得10
11秒前
12秒前
科目三应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得150
13秒前
Hwenjing应助科研通管家采纳,获得30
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得20
13秒前
wanci应助科研通管家采纳,获得50
13秒前
orixero应助科研通管家采纳,获得10
13秒前
somous完成签到,获得积分10
14秒前
14秒前
14秒前
Lion Li发布了新的文献求助10
15秒前
15秒前
Tracy完成签到 ,获得积分10
15秒前
zhang值发布了新的文献求助10
17秒前
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792086
求助须知:如何正确求助?哪些是违规求助? 3336334
关于积分的说明 10280411
捐赠科研通 3052945
什么是DOI,文献DOI怎么找? 1675431
邀请新用户注册赠送积分活动 803446
科研通“疑难数据库(出版商)”最低求助积分说明 761366