A Comparison of Fourier Neural Operators (Fno) for 3d Elastic Wave Propagation

傅里叶变换 地质学 声学 物理 数学 数学分析
作者
Fanny Lehmann,Filippo Gatti,Michaël Bertin,Didier Clouteau
标识
DOI:10.2139/ssrn.4613838
摘要

Numerical simulations are computationally demanding in three-dimensional (3D) settings but they are often required to accurately represent physical phenomena. Neural operators have emerged as powerful surrogate models to alleviate the computational costs of simulations. However, neural operators applications in 3D remain sparse, mainly due to the difficulty of obtaining training databases for supervised learning and the size of 3D neural operators that poses memory challenges. This work focuses on the propagation of elastic waves in 3D domains and showcases the Factorized Fourier Neural Operator (F-FNO) as an efficient and accurate surrogate model. The F-FNO is trained on the publicly available HEMEW-3D database of 30,000 wavefields simulations in realistic heterogeneous domains. The F-FNO predicts space- and time-dependent (3D) surface wavefields depending on the characteristics of the propagation domain (characterized by the velocity of shear waves). Four FNO variants are compared and extensive investigations on the influence of hyperparameters and training strategies are conducted. The two most influential hyperparameters are the number of layers and the number of channels, meaning that richer models are more accurate. On the contrary, increasing the number of Fourier modes had little influence and did not reduce the spectral bias that causes an underestimation of high-frequency patterns. The F-FNO is sensitive to heterogeneities in the inputs but robust to the addition of noise. Additionally, it possesses good generalization ability to out-of-distribution data and transfer learning is very beneficial to improve the predictions in tailored applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助yyds采纳,获得10
刚刚
lr完成签到,获得积分10
1秒前
赘婿应助heli采纳,获得10
4秒前
空巢小黄人完成签到,获得积分10
4秒前
7秒前
slx关注了科研通微信公众号
8秒前
汉堡包应助姜太公采纳,获得10
9秒前
11秒前
科研顺利发布了新的文献求助10
15秒前
15秒前
17秒前
英姑应助无所吊谓采纳,获得10
18秒前
wu发布了新的文献求助10
19秒前
贺光萌完成签到,获得积分10
19秒前
20秒前
粉色的小天鹅完成签到,获得积分10
21秒前
Alex发布了新的文献求助10
22秒前
喵喵虫完成签到,获得积分10
23秒前
26秒前
wu完成签到,获得积分10
28秒前
无所吊谓发布了新的文献求助10
29秒前
ss发布了新的文献求助30
31秒前
豆花浮元子完成签到 ,获得积分10
33秒前
隐形曼青应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
贰鸟应助科研通管家采纳,获得10
34秒前
Hello应助科研通管家采纳,获得10
35秒前
彭于晏应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
35秒前
35秒前
35秒前
小马甲应助科研通管家采纳,获得10
35秒前
37秒前
没有名字完成签到 ,获得积分10
40秒前
大模型应助Alex采纳,获得10
40秒前
42秒前
heli发布了新的文献求助10
46秒前
魚子应助热乎乎的小空气采纳,获得30
46秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897471
求助须知:如何正确求助?哪些是违规求助? 3441572
关于积分的说明 10822157
捐赠科研通 3166385
什么是DOI,文献DOI怎么找? 1749385
邀请新用户注册赠送积分活动 845292
科研通“疑难数据库(出版商)”最低求助积分说明 788565