SpecTr: Spectral Transformer for Microscopic Hyperspectral Pathology Image Segmentation

高光谱成像 判别式 计算机科学 人工智能 分割 模式识别(心理学) 图像分割 数字化病理学 计算机视觉 背景(考古学) 光谱成像 物理 光学 生物 古生物学
作者
Boxiang Yun,Baiying Lei,Jieneng Chen,Huiyu Wang,Song Qiu,Wei Shen,Qingli Li,Yan Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 4610-4624 被引量:38
标识
DOI:10.1109/tcsvt.2023.3326196
摘要

Hyperspectral imaging (HSI) unlocks the huge potential to a wide variety of applications relying on high-precision pathology image segmentation, such as computational pathology. It can acquire biochemical properties even invisible to naked eyes from histological specimens. Since 1) spectra contain discriminative and continuous patterns for differentiating tissues/cells, and 2) the discriminability of spectra relies on both fine-grained relations in the high-resolution spectrum and coarse relations in the low-resolution spectrum, the key to achieving high-precision hyperspectral pathology image segmentation is to felicitously model the intra- and inter-scale context especially for spectra. In this paper, we propose a spectral transformer (SpecTr) for hyperspectral pathology image segmentation, which first captures global context for intra-scale spectral features, and subsequently extract coarse and fine-grained discriminative spectral information from inter-scale features, respectively. To learn intra-scale spectral context, we propose a Spectral Attentive Module (SAM). Unlike the existing Transformer model that is designed for modalities such as natural images, our proposed SAM is efficient in capturing sparse and pivotal spectral context while avoiding the heterogeneous underlying distributions and noises of different bands. Besides, to reduce the computational complexity of the HSI segmentation model, we further propose a global-local attention module to effectively learn a condensed spectral feature. Experiments show that HSIs can become a more powerful image modality for understanding microscopic pathology images than RGB images, and the proposed SpecTr outperforms other competing methods for hyperspectral pathology image segmentation, with an improvement of 3% compared with the popular 3D-nnUNet and other transformer-based methods. Our code is available at https://github.com/DeepMed-Lab-ECNU/SpecTr.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
猩猩发布了新的文献求助10
5秒前
在水一方应助小麦ime采纳,获得10
6秒前
odinsnow发布了新的文献求助10
6秒前
WSYang完成签到,获得积分10
6秒前
李顺杰发布了新的文献求助10
7秒前
虚幻向秋完成签到,获得积分10
7秒前
AWESOME Ling发布了新的文献求助10
8秒前
orixero应助悲凉的世倌采纳,获得30
8秒前
乐乐应助pbj采纳,获得10
9秒前
9秒前
yang发布了新的文献求助10
11秒前
丘比特应助载荷采纳,获得10
12秒前
AWESOME Ling完成签到,获得积分10
13秒前
Hello应助文医生采纳,获得10
14秒前
14秒前
皮皮发布了新的文献求助10
15秒前
ajiwjn完成签到,获得积分10
15秒前
灰太狼完成签到 ,获得积分10
15秒前
清蒸深海鱼完成签到,获得积分10
15秒前
123完成签到,获得积分10
18秒前
19秒前
桃喜芒芒完成签到,获得积分20
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
传奇3应助odinsnow采纳,获得10
21秒前
爆米花应助enolgoy采纳,获得30
21秒前
21秒前
22秒前
22秒前
小武同学发布了新的文献求助10
22秒前
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492914
求助须知:如何正确求助?哪些是违规求助? 4590801
关于积分的说明 14432672
捐赠科研通 4523483
什么是DOI,文献DOI怎么找? 2478348
邀请新用户注册赠送积分活动 1463425
关于科研通互助平台的介绍 1436084