iMSEA: A Novel Metabolite Set Enrichment Analysis Strategy to Decipher Drug Interactions

小桶 化学 药品 计算生物学 代谢物 破译 药物代谢 药物数据库 代谢组学 药物发现 药理学 代谢途径 生物信息学 生物化学 新陈代谢 生物 基因本体论 基因 基因表达 色谱法
作者
Yongpei Wang,Xingxing Liu,Liheng Dong,Kian-Kai Cheng,Caigui Lin,Xiaomin Wang,Jiyang Dong,Lingli Deng,Daniel Raftery
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (15): 6203-6211 被引量:8
标识
DOI:10.1021/acs.analchem.2c04603
摘要

Drug combinations are commonly used to treat various diseases to achieve synergistic therapeutic effects or to alleviate drug resistance. Nevertheless, some drug combinations might lead to adverse effects, and thus, it is crucial to explore the mechanisms of drug interactions before clinical treatment. Generally, drug interactions have been studied using nonclinical pharmacokinetics, toxicology, and pharmacology. Here, we propose a complementary strategy based on metabolomics, which we call interaction metabolite set enrichment analysis, or iMSEA, to decipher drug interactions. First, a digraph-based heterogeneous network model was constructed to model the biological metabolic network based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Second, treatment-specific influences on all detected metabolites were calculated and propagated across the whole network model. Third, pathway activity was defined and enriched to quantify the influence of each treatment on the predefined functional metabolite sets, i.e., metabolic pathways. Finally, drug interactions were identified by comparing the pathway activity enriched by the drug combination treatments and the single drug treatments. A data set consisting of hepatocellular carcinoma (HCC) cells that were treated with oxaliplatin (OXA) and/or vitamin C (VC) was used to illustrate the effectiveness of the iMSEA strategy for evaluation of drug interactions. Performance evaluation using synthetic noise data was also performed to evaluate sensitivities and parameter settings for the iMSEA strategy. The iMSEA strategy highlighted synergistic effects of combined OXA and VC treatments including the alterations in the glycerophospholipid metabolism pathway and glycine, serine, and threonine metabolism pathway. This work provides an alternative method to reveal the mechanisms of drug combinations from the viewpoint of metabolomics.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彦祖发布了新的文献求助10
刚刚
浙琳完成签到,获得积分10
2秒前
LL发布了新的文献求助10
2秒前
hq完成签到 ,获得积分10
4秒前
4秒前
浙琳发布了新的文献求助10
7秒前
小马甲应助落寞灵安采纳,获得10
9秒前
selena完成签到,获得积分10
10秒前
11秒前
田格本发布了新的文献求助10
11秒前
13秒前
XUUGO发布了新的文献求助10
13秒前
裴白薇完成签到 ,获得积分10
14秒前
18秒前
19秒前
luochen完成签到 ,获得积分0
20秒前
20秒前
Qin完成签到,获得积分10
21秒前
22秒前
重生之我是院士完成签到,获得积分10
23秒前
racheal完成签到,获得积分20
24秒前
落寞灵安发布了新的文献求助10
25秒前
Tsuki发布了新的文献求助10
26秒前
lizishu应助小胖酱采纳,获得10
26秒前
30秒前
077完成签到,获得积分10
33秒前
小施发布了新的文献求助10
33秒前
34秒前
科研通AI6.1应助彦祖采纳,获得10
37秒前
Sahar发布了新的文献求助10
37秒前
懒癌晚期完成签到,获得积分10
37秒前
独特忆灵完成签到,获得积分10
39秒前
40秒前
Adc应助大地采纳,获得10
40秒前
xinxin完成签到,获得积分10
41秒前
1234完成签到 ,获得积分10
44秒前
xinxin发布了新的文献求助10
45秒前
彩色的芷容完成签到 ,获得积分10
47秒前
mashibeo完成签到,获得积分0
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5839072
求助须知:如何正确求助?哪些是违规求助? 6136564
关于积分的说明 15602548
捐赠科研通 4957059
什么是DOI,文献DOI怎么找? 2672017
邀请新用户注册赠送积分活动 1617131
关于科研通互助平台的介绍 1572144