iMSEA: A Novel Metabolite Set Enrichment Analysis Strategy to Decipher Drug Interactions

小桶 化学 药品 计算生物学 代谢物 破译 药物代谢 药物数据库 代谢组学 药物发现 药理学 代谢途径 生物信息学 生物化学 新陈代谢 生物 基因本体论 基因 基因表达 色谱法
作者
Yongpei Wang,Xingxing Liu,Liheng Dong,Kian-Kai Cheng,Caigui Lin,Xiaomin Wang,Jiyang Dong,Lingli Deng,Daniel Raftery
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (15): 6203-6211 被引量:8
标识
DOI:10.1021/acs.analchem.2c04603
摘要

Drug combinations are commonly used to treat various diseases to achieve synergistic therapeutic effects or to alleviate drug resistance. Nevertheless, some drug combinations might lead to adverse effects, and thus, it is crucial to explore the mechanisms of drug interactions before clinical treatment. Generally, drug interactions have been studied using nonclinical pharmacokinetics, toxicology, and pharmacology. Here, we propose a complementary strategy based on metabolomics, which we call interaction metabolite set enrichment analysis, or iMSEA, to decipher drug interactions. First, a digraph-based heterogeneous network model was constructed to model the biological metabolic network based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Second, treatment-specific influences on all detected metabolites were calculated and propagated across the whole network model. Third, pathway activity was defined and enriched to quantify the influence of each treatment on the predefined functional metabolite sets, i.e., metabolic pathways. Finally, drug interactions were identified by comparing the pathway activity enriched by the drug combination treatments and the single drug treatments. A data set consisting of hepatocellular carcinoma (HCC) cells that were treated with oxaliplatin (OXA) and/or vitamin C (VC) was used to illustrate the effectiveness of the iMSEA strategy for evaluation of drug interactions. Performance evaluation using synthetic noise data was also performed to evaluate sensitivities and parameter settings for the iMSEA strategy. The iMSEA strategy highlighted synergistic effects of combined OXA and VC treatments including the alterations in the glycerophospholipid metabolism pathway and glycine, serine, and threonine metabolism pathway. This work provides an alternative method to reveal the mechanisms of drug combinations from the viewpoint of metabolomics.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张兴博完成签到 ,获得积分10
1秒前
一二完成签到 ,获得积分10
1秒前
黄雨淋完成签到 ,获得积分10
4秒前
zszz完成签到 ,获得积分10
4秒前
4秒前
SW冒险家完成签到 ,获得积分10
4秒前
辛菜头完成签到,获得积分10
5秒前
zzzjw完成签到 ,获得积分10
5秒前
AptRank完成签到,获得积分10
5秒前
livy完成签到 ,获得积分10
7秒前
Megan完成签到 ,获得积分10
7秒前
标致的夏天完成签到 ,获得积分10
9秒前
青阳完成签到 ,获得积分10
9秒前
10秒前
南波波发布了新的文献求助30
11秒前
11秒前
天行马完成签到,获得积分10
11秒前
13秒前
14秒前
玉米苞发布了新的文献求助10
15秒前
17秒前
yhhhs完成签到 ,获得积分10
17秒前
单薄海莲完成签到 ,获得积分10
20秒前
鲨鱼辣椒完成签到 ,获得积分10
21秒前
小鱼儿完成签到,获得积分10
21秒前
李爱国应助星星采纳,获得10
22秒前
老baby发布了新的文献求助30
22秒前
饱满的惜灵完成签到 ,获得积分10
23秒前
景三完成签到 ,获得积分10
23秒前
深情安青应助活泼的土豆采纳,获得10
24秒前
26秒前
26秒前
26秒前
26秒前
聪慧的从丹完成签到 ,获得积分10
26秒前
26秒前
26秒前
maomoshen完成签到 ,获得积分10
27秒前
27秒前
zhonglv7应助科研通管家采纳,获得10
27秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5846655
求助须知:如何正确求助?哪些是违规求助? 6217293
关于积分的说明 15618357
捐赠科研通 4963224
什么是DOI,文献DOI怎么找? 2675949
邀请新用户注册赠送积分活动 1620658
关于科研通互助平台的介绍 1576242