Optimization of Azare low-grade barite beneficiation: comparative study of response surface methodology and artificial neural network approach

响应面法 中心组合设计 选矿 人工神经网络 实验设计 Box-Behnken设计 数学 材料科学 均方误差 分析化学(期刊) 化学 色谱法 计算机科学 人工智能 统计 冶金
作者
Lekan Taofeek Popoola,Oluwafemi Fadayini
出处
期刊:Heliyon [Elsevier BV]
卷期号:9 (4): e15338-e15338 被引量:4
标识
DOI:10.1016/j.heliyon.2023.e15338
摘要

This study examined the efficacy of response surface methodology (RSM) and artificial neural network (ANN) optimization approaches on barite composition optimization from low-grade Azare barite beneficiation. The Box-Behnken Design (BBD) and Central Composite Design (CCD) approaches were used as RSM methods. The best predictive optimization tool was determined via a comparative study between these methods and ANN. Barite mass (60–100 g), reaction time (15–45 min) and particle size (150–450 μm) at three levels were considered as the process parameters. The ANN architecture is a 3-16-1 feed-forward type. Sigmoid transfer function was adopted and mean square error (MSE) technique was used for network training. Experimental data were divided into training, validation and testing. Batch experimental result revealed maximum barite composition of 98.07% and 95.43% at barite mass, reaction time and particle size of 100 g, 30 min and 150 μm; and 80 g, 30 min and 300 μm for BBD and CCD respectively. The predicted and experimental barite compositions of 98.71% and 96.98%; and 94.59% and 91.05% were recorded at optimum predicted point for BBD and CCD respectively. The analysis of variance revealed high significance of developed model and process parameters. The correlation of determination recorded by ANN for training, validation and testing were 0.9905, 0.9419 and 0.9997; and 0.9851, 0.9381 and 0.9911 for BBD and CCD. The best validation performance was 48.5437 and 5.1777 at epoch 5 and 1 for BBD and CCD respectively. In conclusion, the overall mean squared error of 14.972, 43.560 and 0.255; R2 value of 0.942, 0.9272 and 0.9711; and absolute average deviation of 3.610, 4.217 and 0.370 recorded for BBD, CCD and ANN respectively proved ANN to be the best.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
quzhenzxxx完成签到 ,获得积分10
1秒前
DZQ完成签到,获得积分10
2秒前
有我ID随机吗完成签到,获得积分10
3秒前
cjl完成签到 ,获得积分10
3秒前
hongyi完成签到,获得积分10
4秒前
依古比古完成签到 ,获得积分10
4秒前
5秒前
慕青应助gjh采纳,获得10
5秒前
Tonald Yang发布了新的文献求助10
6秒前
llzuo完成签到,获得积分10
6秒前
guanzhuang完成签到,获得积分10
7秒前
lyl完成签到,获得积分10
9秒前
9秒前
从容谷菱完成签到,获得积分10
9秒前
10秒前
70完成签到,获得积分10
11秒前
chhzz完成签到 ,获得积分10
11秒前
苏桑焉完成签到 ,获得积分10
11秒前
俭朴的世界完成签到 ,获得积分10
12秒前
ztt完成签到,获得积分10
14秒前
谦让涵菡完成签到 ,获得积分10
15秒前
xfy完成签到,获得积分10
17秒前
白月光完成签到,获得积分10
18秒前
贪玩小小完成签到 ,获得积分10
18秒前
优雅的平安完成签到 ,获得积分10
19秒前
RayLam完成签到,获得积分10
20秒前
KKLD完成签到,获得积分10
20秒前
道友等等我完成签到,获得积分0
20秒前
阿苗应助热情的夏采纳,获得10
21秒前
从容鞋子完成签到,获得积分10
21秒前
咖啡博士完成签到 ,获得积分10
21秒前
追寻惋清完成签到 ,获得积分10
23秒前
陈宗琴完成签到,获得积分10
24秒前
cdercder应助吴建文采纳,获得10
25秒前
受伤书文完成签到 ,获得积分10
25秒前
正直夜安完成签到 ,获得积分10
25秒前
25秒前
Lucas应助lvsehx采纳,获得10
26秒前
wyp87完成签到,获得积分10
28秒前
zhangyulu完成签到 ,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784869
求助须知:如何正确求助?哪些是违规求助? 3330150
关于积分的说明 10244534
捐赠科研通 3045519
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800627
科研通“疑难数据库(出版商)”最低求助积分说明 759577