Comprehensive Privacy Analysis on Federated Recommender System Against Attribute Inference Attacks

计算机科学 推荐系统 推论 脆弱性(计算) 协同过滤 多样性(控制论) 信息隐私 万维网 情报检索 计算机安全 人工智能
作者
Shijie Zhang,Wei Yuan,Hongzhi Yin
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (3): 987-999 被引量:67
标识
DOI:10.1109/tkde.2023.3295601
摘要

In recent years, recommender systems are crucially important for the delivery of personalized services that satisfy users' preferences. With personalized recommendation services, users can enjoy a variety of recommendations such as movies, books, ads, restaurants, and more. Despite the great benefits, personalized recommendations typically require the collection of personal data for user modelling and analysis, which can make users susceptible to attribute inference attacks. Specifically, the vulnerability of existing centralized recommenders under attribute inference attacks leaves malicious attackers a backdoor to infer users' private attributes, as the systems remember information of their training data (i.e., interaction data and side information). An emerging practice is to implement recommender systems in the federated setting, which enables all user devices to collaboratively learn a shared global recommender while keeping all the training data on device. However, the privacy issues in federated recommender systems have been rarely explored. In this paper, we first design a novel attribute inference attacker to perform a comprehensive privacy analysis of the GCN-based federated recommender models. The experimental results show that the vulnerability of each model component against attribute inference attack is varied, highlighting the need for new defense approaches. Therefore, we propose a novel adaptive privacy-preserving approach to protect users' sensitive data in the presence of attribute inference attacks and meanwhile maximize the recommendation accuracy. Extensive experimental results on two real-world datasets validate the superior performance of our model on both recommendation effectiveness and resistance to inference attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助柏康娜采纳,获得10
刚刚
Arthit完成签到 ,获得积分10
1秒前
crazzzzzy发布了新的文献求助30
1秒前
贾硕士发布了新的文献求助10
2秒前
丰富青文发布了新的文献求助10
2秒前
小透明给动听的满天的求助进行了留言
3秒前
3秒前
3秒前
145完成签到,获得积分20
3秒前
SciGPT应助梦寻希望采纳,获得10
3秒前
义气的书本完成签到,获得积分10
4秒前
butterflycat完成签到,获得积分10
4秒前
6秒前
6秒前
7秒前
缥缈的芷卉完成签到 ,获得积分10
8秒前
8秒前
10秒前
BowieHuang应助丰富青文采纳,获得10
10秒前
11秒前
彭于晏应助深夜研究生采纳,获得10
11秒前
肖雪依发布了新的文献求助10
12秒前
希望天下0贩的0应助陈龙采纳,获得10
12秒前
Wind应助小鱼鱼Fish采纳,获得20
12秒前
叶95发布了新的文献求助10
12秒前
老兵风采发布了新的文献求助10
12秒前
可爱的函函应助123lura采纳,获得10
13秒前
yuyichi发布了新的文献求助10
14秒前
15秒前
2499297293发布了新的文献求助20
15秒前
清脆的从蕾完成签到,获得积分10
15秒前
轻松完成签到,获得积分10
16秒前
18秒前
刀锋入骨不得不战关注了科研通微信公众号
18秒前
chen发布了新的文献求助10
18秒前
无极微光应助冷静的方盒采纳,获得20
19秒前
丘比特应助罗婉婷采纳,获得10
19秒前
shenlaizhibi发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
香蕉觅云应助shadow采纳,获得10
20秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583497
求助须知:如何正确求助?哪些是违规求助? 4667329
关于积分的说明 14766586
捐赠科研通 4609506
什么是DOI,文献DOI怎么找? 2529221
邀请新用户注册赠送积分活动 1498459
关于科研通互助平台的介绍 1467101