Optimized bare soil compositing for soil organic carbon prediction of topsoil croplands in Bavaria using Landsat

合成 环境科学 土壤碳 表土 背景(考古学) 土壤图 植被(病理学) 遥感 归一化差异植被指数 数字土壤制图 土壤科学 土工试验 水文学(农业) 土壤水分 气候变化 地质学 计算机科学 海洋学 图像(数学) 病理 古生物学 人工智能 岩土工程 医学
作者
Simone Zepp,Uta Heiden,Martin Bachmann,Markus Möller,Martin Wiesmeier,Bas van Wesemael
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 287-302 被引量:8
标识
DOI:10.1016/j.isprsjprs.2023.06.003
摘要

Soil Organic Carbon (SOC) is amongst others an indicator for soil degradation and soil health of croplands. Induced by recent policy initiatives, awareness for high resolution SOC maps and techniques to estimate changes is increasing. For area-wide mapping approaches with at least a field resolution, Earth Observation is a valuable data source to extract bare soil areas and to quantify SOC contents for these areas. In this context, compositing techniques of multi-temporal image archives are widely used to overcome the limitation of vegetation cover of fields during the overpass of the satellite. Comparing current bare soil compositing approaches, two aspects are of particular importance: 1) the index for bare soil selection and 2) the length of the compositing period for recurrent analyses. In this study, we applied the Soil Composite Mapping Processor (SCMaP) to the full archive of Landsat data between 2005 and 2019 to optimize parameters for soil reflectance composite (SRC) generation of multitemporal satellite imagery for SOC predictions. For this purpose, three spectral indices (PV + BLUE, PV + IR2, and NBR2) for SRC generation were implemented in the SCMaP chain. For all three indices a validation of the extracted bare soil dates with field observations and phenological information from the crop calendar showed a reliable extraction of bare soil dates. Due to the crops in the investigation area, spring and autumn months indicated the highest proportion of correctly selected bare soil dates. We also analyzed the SOC modeling capabilities of different composed SRCs (indices and varying seasonal and temporal lengths) in combination with available legacy data. In comparison to a seasonal pre-selection of scenes (spring and autumn months) included in the SRC, the different indices showed a minor influence on SOC modeling. However, PV + BLUE performed best (R2: 0.56 – 0.72, RMSE: 1.09 – 1.29%, RPD: 1.51 – 1.91). Furthermore, we compared the SOC model capabilities for different SRC compositing lengths (3-, 5-, 7-, 10- and 15-years). For PV + BLUE and PV + IR2, longer compositing lengths (from three to 15 years) resulted in an increase of the model accuracies and performances. However, for NBR2 this was not as clear. Based on the results at least a 5-year compositing period is required for recurrent SOC predictions using Landsat data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yecheng完成签到,获得积分10
1秒前
科研路上的干饭桶完成签到,获得积分10
2秒前
3秒前
3秒前
wanci应助小安采纳,获得10
4秒前
小崔读研完成签到 ,获得积分10
6秒前
jiwen完成签到,获得积分10
6秒前
6秒前
虎科研发布了新的文献求助10
11秒前
13秒前
拾叁完成签到,获得积分10
13秒前
15秒前
小安完成签到,获得积分10
16秒前
17秒前
dddddd发布了新的文献求助10
18秒前
机智的紫丝完成签到,获得积分10
18秒前
NexusExplorer应助斯文的道罡采纳,获得10
18秒前
21秒前
希望天下0贩的0应助dddddd采纳,获得10
21秒前
junxi发布了新的文献求助10
23秒前
学术混子完成签到 ,获得积分10
23秒前
yuaner发布了新的文献求助10
23秒前
元谷雪发布了新的文献求助10
25秒前
26秒前
善良的背包完成签到,获得积分10
27秒前
30秒前
今后应助科研电催化采纳,获得10
31秒前
loulan完成签到,获得积分10
33秒前
junxi完成签到,获得积分10
35秒前
ILBY发布了新的文献求助10
37秒前
37秒前
娜娜子完成签到 ,获得积分10
39秒前
39秒前
tanzzz发布了新的文献求助10
41秒前
42秒前
kingwill完成签到,获得积分0
43秒前
奋斗蝴蝶完成签到,获得积分10
43秒前
zxf发布了新的文献求助10
44秒前
46秒前
46秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831507
求助须知:如何正确求助?哪些是违规求助? 3373721
关于积分的说明 10481076
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307