MSGANet-RAV: A multiscale guided attention network for artery-vein segmentation and classification from optic disc and retinal images

视盘 人工智能 分割 眼底(子宫) 计算机科学 视网膜 像素 光盘 青光眼 计算机视觉 视网膜中央动脉 视杯(胚胎学) 医学 视网膜动脉 模式识别(心理学) 眼科 表型 眼睛发育 基因 化学 生物化学
作者
AZM Ehtesham Chowdhury,Graham J. Mann,William H. Morgan,Aleksandar Vukmirovic,Andrew Mehnert,Ferdous Sohel
出处
期刊:Journal of Optometry [Elsevier BV]
卷期号:15: S58-S69 被引量:7
标识
DOI:10.1016/j.optom.2022.11.001
摘要

Retinal and optic disc images are used to assess changes in the retinal vasculature. These can be changes associated with diseases such as diabetic retinopathy and glaucoma or induced using ophthalmodynamometry to measure arterial and venous pressure. Key steps toward automating the assessment of these changes are the segmentation and classification of the veins and arteries. However, such segmentation and classification are still required to be manually labelled by experts. Such automated labelling is challenging because of the complex morphology, anatomical variations, alterations due to disease and scarcity of labelled data for algorithm development. We present a deep machine learning solution called the multiscale guided attention network for retinal artery and vein segmentation and classification (MSGANet-RAV).MSGANet-RAV was developed and tested on 383 colour clinical optic disc images from LEI-CENTRAL, constructed in-house and 40 colour fundus images from the AV-DRIVE public dataset. The datasets have a mean optic disc occupancy per image of 60.6% and 2.18%, respectively. MSGANet-RAV is a U-shaped encoder-decoder network, where the encoder extracts multiscale features, and the decoder includes a sequence of self-attention modules. The self-attention modules explore, guide and incorporate vessel-specific structural and contextual feature information to segment and classify central optic disc and retinal vessel pixels.MSGANet-RAV achieved a pixel classification accuracy of 93.15%, sensitivity of 92.19%, and specificity of 94.13% on LEI-CENTRAL, outperforming several reference models. It similarly performed highly on AV-DRIVE with an accuracy, sensitivity and specificity of 95.48%, 93.59% and 97.27%, respectively.The results show the efficacy of MSGANet-RAV for identifying central optic disc and retinal arteries and veins. The method can be used in automated systems designed to assess vascular changes in retinal and optic disc images quantitatively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏诗翠完成签到 ,获得积分10
刚刚
乐乐应助Star1983采纳,获得10
刚刚
酷酷白凡完成签到,获得积分10
刚刚
1秒前
zt1812431172完成签到,获得积分10
1秒前
1秒前
快乐的水杯完成签到,获得积分10
1秒前
BCEMTZ完成签到,获得积分10
1秒前
赘婿应助ZMY采纳,获得10
3秒前
fei完成签到,获得积分10
3秒前
标致胡萝卜完成签到 ,获得积分10
3秒前
3秒前
3秒前
狂野飞柏完成签到 ,获得积分10
3秒前
meta完成签到,获得积分10
4秒前
4秒前
cici完成签到 ,获得积分10
4秒前
4秒前
4秒前
NexusExplorer应助zhuqian采纳,获得10
5秒前
FIN应助NatalyaF采纳,获得20
5秒前
fwstu完成签到,获得积分10
5秒前
詹卫卫完成签到,获得积分10
6秒前
daq完成签到,获得积分10
6秒前
hyw完成签到,获得积分10
6秒前
tdtk发布了新的文献求助10
7秒前
李爱国应助傅宛白采纳,获得10
7秒前
zzzz发布了新的文献求助10
7秒前
cm完成签到,获得积分10
8秒前
8秒前
红丽阿妹完成签到,获得积分10
8秒前
9秒前
执着的水杯完成签到,获得积分10
9秒前
gujian完成签到 ,获得积分10
9秒前
hao完成签到,获得积分10
9秒前
9秒前
风中巧荷发布了新的文献求助10
9秒前
开心不评完成签到 ,获得积分10
10秒前
轻松凡英完成签到,获得积分10
10秒前
拼搏的秋玲完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4022312
求助须知:如何正确求助?哪些是违规求助? 3562444
关于积分的说明 11338155
捐赠科研通 3294251
什么是DOI,文献DOI怎么找? 1814486
邀请新用户注册赠送积分活动 889254
科研通“疑难数据库(出版商)”最低求助积分说明 812858