MSGANet-RAV: A multiscale guided attention network for artery-vein segmentation and classification from optic disc and retinal images

视盘 人工智能 分割 眼底(子宫) 计算机科学 视网膜 像素 光盘 青光眼 计算机视觉 视网膜中央动脉 视杯(胚胎学) 医学 视网膜动脉 模式识别(心理学) 眼科 表型 眼睛发育 基因 化学 生物化学
作者
AZM Ehtesham Chowdhury,Graham J. Mann,William H. Morgan,Aleksandar Vukmirovic,Andrew Mehnert,Ferdous Sohel
出处
期刊:Journal of Optometry [Elsevier]
卷期号:15: S58-S69 被引量:7
标识
DOI:10.1016/j.optom.2022.11.001
摘要

Retinal and optic disc images are used to assess changes in the retinal vasculature. These can be changes associated with diseases such as diabetic retinopathy and glaucoma or induced using ophthalmodynamometry to measure arterial and venous pressure. Key steps toward automating the assessment of these changes are the segmentation and classification of the veins and arteries. However, such segmentation and classification are still required to be manually labelled by experts. Such automated labelling is challenging because of the complex morphology, anatomical variations, alterations due to disease and scarcity of labelled data for algorithm development. We present a deep machine learning solution called the multiscale guided attention network for retinal artery and vein segmentation and classification (MSGANet-RAV).MSGANet-RAV was developed and tested on 383 colour clinical optic disc images from LEI-CENTRAL, constructed in-house and 40 colour fundus images from the AV-DRIVE public dataset. The datasets have a mean optic disc occupancy per image of 60.6% and 2.18%, respectively. MSGANet-RAV is a U-shaped encoder-decoder network, where the encoder extracts multiscale features, and the decoder includes a sequence of self-attention modules. The self-attention modules explore, guide and incorporate vessel-specific structural and contextual feature information to segment and classify central optic disc and retinal vessel pixels.MSGANet-RAV achieved a pixel classification accuracy of 93.15%, sensitivity of 92.19%, and specificity of 94.13% on LEI-CENTRAL, outperforming several reference models. It similarly performed highly on AV-DRIVE with an accuracy, sensitivity and specificity of 95.48%, 93.59% and 97.27%, respectively.The results show the efficacy of MSGANet-RAV for identifying central optic disc and retinal arteries and veins. The method can be used in automated systems designed to assess vascular changes in retinal and optic disc images quantitatively.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃发布了新的文献求助10
2秒前
wbqdssl完成签到,获得积分10
3秒前
吴涛发布了新的文献求助10
4秒前
腼腆的冷玉完成签到,获得积分10
4秒前
levi完成签到 ,获得积分10
5秒前
PIngguo完成签到 ,获得积分10
6秒前
6秒前
李animal发布了新的文献求助10
7秒前
莽兽鳞上最黑的皮完成签到,获得积分10
8秒前
hhhhhhhhhh完成签到 ,获得积分10
8秒前
tytyty完成签到,获得积分10
9秒前
cc2004bj应助梁寒采纳,获得10
11秒前
桐桐应助梦里格斗家采纳,获得10
12秒前
13秒前
善学以致用应助DQ采纳,获得10
15秒前
15秒前
核桃完成签到,获得积分0
15秒前
佛人世间完成签到,获得积分10
16秒前
Vvvmi发布了新的文献求助10
18秒前
悠悠发布了新的文献求助10
19秒前
自由溪灵完成签到,获得积分10
19秒前
蘑菇完成签到 ,获得积分10
20秒前
科研通AI6.2应助李animal采纳,获得10
20秒前
月兮2013发布了新的文献求助10
21秒前
JW完成签到,获得积分10
21秒前
cc2004bj应助欧阳锋采纳,获得10
21秒前
21秒前
生动的又晴完成签到 ,获得积分10
22秒前
22秒前
老小孩完成签到 ,获得积分10
22秒前
陈瑞完成签到 ,获得积分10
28秒前
快快发布了新的文献求助30
28秒前
DQ发布了新的文献求助10
29秒前
David完成签到 ,获得积分10
30秒前
31秒前
王青青完成签到,获得积分10
32秒前
33秒前
Owen应助王东旭采纳,获得10
33秒前
尔玉完成签到 ,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5867164
求助须知:如何正确求助?哪些是违规求助? 6430915
关于积分的说明 15656075
捐赠科研通 4982317
什么是DOI,文献DOI怎么找? 2686957
邀请新用户注册赠送积分活动 1629756
关于科研通互助平台的介绍 1587759