MSGANet-RAV: A multiscale guided attention network for artery-vein segmentation and classification from optic disc and retinal images

视盘 人工智能 分割 眼底(子宫) 计算机科学 视网膜 像素 光盘 青光眼 计算机视觉 视网膜中央动脉 视杯(胚胎学) 医学 视网膜动脉 模式识别(心理学) 眼科 表型 眼睛发育 基因 化学 生物化学
作者
AZM Ehtesham Chowdhury,Graham J. Mann,William H. Morgan,Aleksandar Vukmirovic,Andrew Mehnert,Ferdous Sohel
出处
期刊:Journal of Optometry [Elsevier]
卷期号:15: S58-S69 被引量:7
标识
DOI:10.1016/j.optom.2022.11.001
摘要

Retinal and optic disc images are used to assess changes in the retinal vasculature. These can be changes associated with diseases such as diabetic retinopathy and glaucoma or induced using ophthalmodynamometry to measure arterial and venous pressure. Key steps toward automating the assessment of these changes are the segmentation and classification of the veins and arteries. However, such segmentation and classification are still required to be manually labelled by experts. Such automated labelling is challenging because of the complex morphology, anatomical variations, alterations due to disease and scarcity of labelled data for algorithm development. We present a deep machine learning solution called the multiscale guided attention network for retinal artery and vein segmentation and classification (MSGANet-RAV).MSGANet-RAV was developed and tested on 383 colour clinical optic disc images from LEI-CENTRAL, constructed in-house and 40 colour fundus images from the AV-DRIVE public dataset. The datasets have a mean optic disc occupancy per image of 60.6% and 2.18%, respectively. MSGANet-RAV is a U-shaped encoder-decoder network, where the encoder extracts multiscale features, and the decoder includes a sequence of self-attention modules. The self-attention modules explore, guide and incorporate vessel-specific structural and contextual feature information to segment and classify central optic disc and retinal vessel pixels.MSGANet-RAV achieved a pixel classification accuracy of 93.15%, sensitivity of 92.19%, and specificity of 94.13% on LEI-CENTRAL, outperforming several reference models. It similarly performed highly on AV-DRIVE with an accuracy, sensitivity and specificity of 95.48%, 93.59% and 97.27%, respectively.The results show the efficacy of MSGANet-RAV for identifying central optic disc and retinal arteries and veins. The method can be used in automated systems designed to assess vascular changes in retinal and optic disc images quantitatively.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuqs发布了新的文献求助10
刚刚
cccdida完成签到,获得积分10
刚刚
1秒前
2秒前
3秒前
自由马儿发布了新的文献求助10
5秒前
5秒前
LucyMartinez发布了新的文献求助10
6秒前
6秒前
mmm发布了新的文献求助30
7秒前
7秒前
8秒前
juliar完成签到 ,获得积分10
8秒前
科研通AI6.1应助yuwshuihen采纳,获得10
8秒前
慕青应助Anthony采纳,获得10
9秒前
9秒前
10秒前
10秒前
所所应助就123采纳,获得10
10秒前
姜姜发布了新的文献求助10
10秒前
10秒前
Zyc发布了新的文献求助10
11秒前
11秒前
my发布了新的文献求助10
12秒前
希望天下0贩的0应助东明采纳,获得10
12秒前
wdd发布了新的文献求助10
13秒前
mml发布了新的文献求助10
14秒前
Joseph_sss完成签到 ,获得积分10
15秒前
wuqs完成签到,获得积分10
15秒前
加油发布了新的文献求助10
16秒前
16秒前
17秒前
独特振家完成签到,获得积分10
17秒前
打打应助Hana采纳,获得10
18秒前
不知完成签到 ,获得积分10
20秒前
20秒前
FashionBoy应助微笑的傲霜采纳,获得10
20秒前
自由马儿发布了新的文献求助10
21秒前
丘比特应助余共采纳,获得30
21秒前
明亮西牛发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870087
求助须知:如何正确求助?哪些是违规求助? 6458109
关于积分的说明 15662626
捐赠科研通 4986092
什么是DOI,文献DOI怎么找? 2688657
邀请新用户注册赠送积分活动 1631014
关于科研通互助平台的介绍 1589104