DeepLPI: a novel deep learning-based model for protein–ligand interaction prediction for drug repurposing

药物重新定位 重新调整用途 计算机科学 深度学习 药物发现 计算生物学 药品 人工智能 机器学习 生物信息学 药理学 生物 生态学
作者
Bomin Wei,Yue Zhang,Xiang Gong
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:28
标识
DOI:10.1038/s41598-022-23014-1
摘要

The substantial cost of new drug research and development has consistently posed a huge burden for both pharmaceutical companies and patients. In order to lower the expenditure and development failure rate, repurposing existing and approved drugs by identifying interactions between drug molecules and target proteins based on computational methods have gained growing attention. Here, we propose the DeepLPI, a novel deep learning-based model that mainly consists of ResNet-based 1-dimensional convolutional neural network (1D CNN) and bi-directional long short term memory network (biLSTM), to establish an end-to-end framework for protein-ligand interaction prediction. We first encode the raw drug molecular sequences and target protein sequences into dense vector representations, which go through two ResNet-based 1D CNN modules to derive features, respectively. The extracted feature vectors are concatenated and further fed into the biLSTM network, followed by the MLP module to finally predict protein-ligand interaction. We downloaded the well-known BindingDB and Davis dataset for training and testing our DeepLPI model. We also applied DeepLPI on a COVID-19 dataset for externally evaluating the prediction ability of DeepLPI. To benchmark our model, we compared our DeepLPI with the baseline methods of DeepCDA and DeepDTA, and observed that our DeepLPI outperformed these methods, suggesting the high accuracy of the DeepLPI towards protein-ligand interaction prediction. The high prediction performance of DeepLPI on the different datasets displayed its high capability of protein-ligand interaction in generalization, demonstrating that the DeepLPI has the potential to pinpoint new drug-target interactions and to find better destinations for proven drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形傲霜完成签到 ,获得积分10
1秒前
1秒前
小庄完成签到,获得积分10
1秒前
九卫完成签到 ,获得积分10
2秒前
落后十八完成签到,获得积分10
2秒前
tianxiong完成签到 ,获得积分10
4秒前
求助人完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
大雷发布了新的文献求助10
6秒前
研友_8WO978完成签到,获得积分10
6秒前
6秒前
北海完成签到,获得积分10
6秒前
heher完成签到 ,获得积分10
7秒前
nyfz2002发布了新的文献求助10
7秒前
wangke完成签到,获得积分10
8秒前
丹阳阳完成签到,获得积分10
8秒前
夜未央完成签到,获得积分10
9秒前
奋斗的大白菜完成签到,获得积分10
9秒前
聪慧的橘子完成签到 ,获得积分10
9秒前
昵称完成签到,获得积分10
9秒前
挺帅一男的完成签到,获得积分10
9秒前
脑洞疼应助专一的萝莉采纳,获得10
10秒前
研友_8WO978发布了新的文献求助10
10秒前
fwz发布了新的文献求助10
10秒前
AoAoo发布了新的文献求助10
10秒前
orchid发布了新的文献求助10
11秒前
gyx完成签到 ,获得积分10
11秒前
米粒完成签到 ,获得积分10
11秒前
梦河完成签到,获得积分10
11秒前
梅西完成签到 ,获得积分10
11秒前
含蓄幻桃发布了新的文献求助10
11秒前
小mol仙完成签到,获得积分10
12秒前
A溶大美噶完成签到,获得积分10
12秒前
乐观健柏完成签到,获得积分10
13秒前
琥1完成签到,获得积分10
13秒前
枯藤老柳树完成签到,获得积分10
13秒前
东皇太憨完成签到,获得积分10
14秒前
打打完成签到 ,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788474
求助须知:如何正确求助?哪些是违规求助? 3333791
关于积分的说明 10263810
捐赠科研通 3049776
什么是DOI,文献DOI怎么找? 1673652
邀请新用户注册赠送积分活动 802148
科研通“疑难数据库(出版商)”最低求助积分说明 760526