Joint Planning of Fleet Deployment, Ship Refueling, and Speed Optimization for Dual-Fuel Ships Considering Methane Slip

液化天然气 燃料效率 燃料油 甲烷 温室气体 煤仓 环境科学 软件部署 天然气 海洋工程 工程类 废物管理 汽车工程 软件工程 生物 生态学
作者
Yiwei Wu,Yadan Huang,Huiwen Wang,Lu Zhen
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:10 (11): 1690-1690 被引量:9
标识
DOI:10.3390/jmse10111690
摘要

Reducing air pollution and greenhouse gas emissions has become one of the primary tasks for the shipping industry over the past few years. Among alternative marine fuels, liquefied natural gas (LNG) is regarded as one of the most popular alternative marine fuels because it is one of the cleanest fossil marine fuels. Therefore, a practical way to implement green shipping is to deploy dual-fuel ships that can burn conventional fuel oil and LNG on various ship routes. However, a severe problem faced by dual-fuel ships is methane slip from the engines of ships. Therefore, this study formulates a nonlinear mixed-integer programming model for an integrated optimization problem of fleet deployment, ship refueling, and speed optimization for dual-fuel ships, with the consideration of fuel consumption of both main and auxiliary engines, ship carbon emissions, availability of LNG at different ports of call, and methane slip from the main engines of ships. Several linearization techniques are applied to transform the nonlinear model into a linear model that can be directly solved by off-the-shelf solvers. A large number of computational experiments are carried out to assess the model performance. The proposed linearized model can be solved quickly by Gurobi, namely shorter than 0.12 s, which implies the possibility of applying the proposed model to practical problems to help decision-makers of shipping liners make operational decisions. In addition, sensitivity analyses with essential parameters, such as the price difference between the conventional fuel oil and LNG, carbon tax, and methane slip amount, are conducted to investigate the influences of these factors on operational decisions to seek managerial insights. For example, even under the existing strictest carbon tax policy, shipping liners do not need to deploy more ships and slow steaming to reduce the total weekly cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闫栋完成签到 ,获得积分10
1秒前
22应助睡不醒的喵采纳,获得10
1秒前
2秒前
科研通AI5应助wbbbb采纳,获得30
3秒前
peanut发布了新的文献求助10
5秒前
Owen应助啦啦啦采纳,获得10
6秒前
xiaoou发布了新的文献求助10
8秒前
小文发布了新的文献求助10
9秒前
苹果味水果完成签到,获得积分10
9秒前
10秒前
13秒前
zzw18512467916完成签到,获得积分10
13秒前
14秒前
邓紫棋发布了新的文献求助10
14秒前
夕阳与茶完成签到,获得积分10
15秒前
4归0发布了新的文献求助10
15秒前
yll完成签到,获得积分10
16秒前
17秒前
开心之王发布了新的文献求助10
18秒前
19秒前
19秒前
qinlq完成签到 ,获得积分10
20秒前
20秒前
深情安青应助albertxin采纳,获得10
20秒前
糟糕的铁锤完成签到,获得积分0
20秒前
Orange应助Mida采纳,获得10
22秒前
23秒前
24秒前
lzy完成签到,获得积分10
24秒前
zzt37927发布了新的文献求助10
24秒前
25秒前
77完成签到,获得积分10
26秒前
pass发布了新的文献求助10
26秒前
wanci应助dxf采纳,获得10
26秒前
秋子发布了新的文献求助10
26秒前
科研通AI2S应助细心的语蓉采纳,获得10
26秒前
Owen应助碧蓝成危采纳,获得10
27秒前
蝶步韶华发布了新的文献求助10
29秒前
29秒前
冰冷热带鱼完成签到,获得积分10
31秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Synthesis of Solid Catalysts 200
半导体金属氧化物纳米材料:合成、气敏特性及气体传感应用 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832910
求助须知:如何正确求助?哪些是违规求助? 3375329
关于积分的说明 10488651
捐赠科研通 3094953
什么是DOI,文献DOI怎么找? 1704149
邀请新用户注册赠送积分活动 819805
科研通“疑难数据库(出版商)”最低求助积分说明 771639