MRI-based classification of IDH mutation and 1p/19q codeletion status of gliomas using a 2.5D hybrid multi-task convolutional neural network

胶质瘤 卷积神经网络 接收机工作特性 人工智能 医学 模式识别(心理学) 计算机科学 内科学 癌症研究
作者
Satrajit Chakrabarty,Pamela LaMontagne,Joshua S. Shimony,Daniel S. Marcus,Aristeidis Sotiras
出处
期刊:Neuro-oncology advances [Oxford University Press]
卷期号:5 (1) 被引量:19
标识
DOI:10.1093/noajnl/vdad023
摘要

Abstract Background IDH mutation and 1p/19q codeletion status are important prognostic markers for glioma that are currently determined using invasive procedures. Our goal was to develop artificial intelligence-based methods to noninvasively determine molecular alterations from MRI. Methods Pre-operative MRI scans of 2648 glioma patients were collected from Washington University School of Medicine (WUSM; n = 835) and publicly available Brain Tumor Segmentation (BraTS; n = 378), LGG 1p/19q (n = 159), Ivy Glioblastoma Atlas Project (Ivy GAP; n = 41), The Cancer Genome Atlas (TCGA; n = 461), and the Erasmus Glioma Database (EGD; n = 774) datasets. A 2.5D hybrid convolutional neural network was proposed to simultaneously localize glioma and classify its molecular status by leveraging MRI imaging features and prior knowledge features from clinical records and tumor location. The models were trained on 223 and 348 cases for IDH and 1p/19q tasks, respectively, and tested on one internal (TCGA) and two external (WUSM and EGD) test sets. Results For IDH, the best-performing model achieved areas under the receiver operating characteristic (AUROC) of 0.925, 0.874, 0.933 and areas under the precision-recall curves (AUPRC) of 0.899, 0.702, 0.853 on the internal, WUSM, and EGD test sets, respectively. For 1p/19q, the best model achieved AUROCs of 0.782, 0.754, 0.842, and AUPRCs of 0.588, 0.713, 0.782, on those three data-splits, respectively. Conclusions The high accuracy of the model on unseen data showcases its generalization capabilities and suggests its potential to perform “virtual biopsy” for tailoring treatment planning and overall clinical management of gliomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hongshiyi发布了新的文献求助10
刚刚
炙热的雨旋完成签到,获得积分10
刚刚
1秒前
1秒前
AliceWong完成签到,获得积分10
1秒前
2秒前
赘婿应助典雅的静采纳,获得10
2秒前
我不爱池鱼应助研友_Z33zkZ采纳,获得10
3秒前
万能图书馆应助研友_Z33zkZ采纳,获得10
3秒前
TTT完成签到,获得积分10
4秒前
不敢装睡发布了新的文献求助10
4秒前
修修修发布了新的文献求助10
4秒前
木西完成签到,获得积分20
5秒前
acc发布了新的文献求助10
6秒前
6秒前
笑点低的凝阳完成签到,获得积分10
6秒前
linxm7完成签到,获得积分10
6秒前
hehehe完成签到,获得积分10
7秒前
LY发布了新的文献求助10
7秒前
hongshiyi完成签到,获得积分20
8秒前
8秒前
糖糖糖发布了新的文献求助10
8秒前
8秒前
morry5007发布了新的文献求助10
8秒前
小葡完成签到,获得积分10
8秒前
Amber完成签到,获得积分10
8秒前
科研通AI5应助舒适路人采纳,获得10
8秒前
苻醉山发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
十一发布了新的文献求助10
11秒前
ljh完成签到,获得积分10
11秒前
南方车站发布了新的文献求助10
12秒前
zzz完成签到,获得积分10
12秒前
12秒前
今后应助dongdong采纳,获得10
12秒前
我是老大应助苯ben采纳,获得10
12秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786101
求助须知:如何正确求助?哪些是违规求助? 3331636
关于积分的说明 10251844
捐赠科研通 3046973
什么是DOI,文献DOI怎么找? 1672320
邀请新用户注册赠送积分活动 801243
科研通“疑难数据库(出版商)”最低求助积分说明 760059