Underwater Forward-Looking Sonar Images Target Detection via Speckle Reduction and Scene Prior

计算机科学 人工智能 散斑噪声 计算机视觉 目标检测 特征(语言学) 噪音(视频) 声纳 乘性噪声 水下 斑点图案 探测器 特征提取 模式识别(心理学) 图像(数学) 电信 传输(电信) 海洋学 地质学 信号传递函数 哲学 语言学 模拟信号
作者
Hui Long,Liquan Shen,Zhengyong Wang,Jinbo Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:29
标识
DOI:10.1109/tgrs.2023.3248605
摘要

Forward-looking sonar (FLS) imagery system plays a significant role in oceanic object recognition and detection since it can overcome the limitation of lighting conditions and reflect the real situation of the underwater environment. However, object detection algorithms for FLS images remain challenging for two main reasons: 1) the noise caused by the coherent characteristic of the scattering phenomenon impairs the detector capture of target information and 2) the scene prior based on the uneven target scale distribution is generally neglected, which leads to the detector generating redundant anchors and slows down detection efficiency. Confronting such challenges, this article characterizes the noise and the uneven target scale distribution in FLS images as multiplicative speckle noise and scene prior, respectively. Therefore, we propose a novel underwater FLS image detection network, namely UFIDNet, to further improve detection performance by considering speckle noise reduction and scene prior in FLS images. More specifically, a speckle reduction auxiliary branch (SRAB) is designed to introduce additional despeckled supervision information to encourage the feature extractor to produce clean features and share them with the detection pipeline during the training phase. In particular, the noise distribution of FLS images is excavated for synthetic dataset construction and despeckle network (DSN) design to obtain despeckled supervision images. In addition, a feature selection strategy (FSS) embedded in detection branch is designed to screen out feature levels that do not match the target size, thus significantly reducing the generation of redundant anchors and improving detection speed. Experimental results show that our UFIDNet achieves 70.5% and 47.3% average precision (AP), 81.3% and 54.6% average recall (AR) ( $\text {AR}_{\text {max=10}}$ ), 27.0 and 26.1 FPS on two real FLS datasets, respectively, outperforming many state-of-the-art general detectors and sonar image detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pandas_hhh完成签到 ,获得积分10
1秒前
鲸鱼发布了新的文献求助10
2秒前
linhappy发布了新的文献求助10
2秒前
柯语雪完成签到 ,获得积分10
3秒前
3秒前
4秒前
上官若男应助勤劳茗采纳,获得10
5秒前
vicin发布了新的文献求助30
5秒前
诚心的凛完成签到,获得积分10
6秒前
星辰大海应助chin采纳,获得10
6秒前
铃兰发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
13秒前
Developing_human完成签到,获得积分10
13秒前
magic发布了新的文献求助10
14秒前
斯文败类应助多久上课采纳,获得10
15秒前
zhangyulong发布了新的文献求助10
15秒前
16秒前
leaolf应助lllcy采纳,获得10
17秒前
慕新发布了新的文献求助10
17秒前
帅气溪流发布了新的文献求助10
19秒前
forge发布了新的文献求助20
19秒前
斯文败类应助鲸鱼采纳,获得10
19秒前
20秒前
20秒前
qianmiao完成签到,获得积分10
21秒前
null应助拾一采纳,获得50
21秒前
研友_yLpYkn完成签到,获得积分10
22秒前
雪白的夏山应助ZSQ采纳,获得10
23秒前
2499297293发布了新的文献求助10
23秒前
maomao1986完成签到,获得积分10
23秒前
24秒前
25秒前
vchen0621发布了新的文献求助10
25秒前
Hikx发布了新的文献求助10
26秒前
陈里里完成签到 ,获得积分10
26秒前
无聊的万天完成签到,获得积分10
26秒前
forge完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537931
求助须知:如何正确求助?哪些是违规求助? 3972654
关于积分的说明 12306475
捐赠科研通 3639434
什么是DOI,文献DOI怎么找? 2003881
邀请新用户注册赠送积分活动 1039207
科研通“疑难数据库(出版商)”最低求助积分说明 928594