Deep learning-based computed tomography applied to the diagnosis of rib fractures

医学 放射科 卷积神经网络 特征(语言学) 召回率 计算机断层摄影术 急诊科 人工智能 计算机科学 哲学 语言学 精神科
作者
Zhen-wei Lin,Weili Dai,Qing-Quan Lai,Hong Wu
出处
期刊:Journal of Radiation Research and Applied Sciences [Elsevier BV]
卷期号:16 (2): 100558-100558 被引量:5
标识
DOI:10.1016/j.jrras.2023.100558
摘要

To explore the feasibility of using deep learning method to improve the efficiency of rib fracture defect diagnosis in CT images. This study retrospective analysis of chest CT images of 2622 patients who were admitted to the outpatient and emergency departments due to chest trauma. The CT image is fed into HourglassNet for primary feature extraction, then into Inception for multi-scale feature extraction, and finally the different scale features are recombined, and then the deep convolutional neural networks (DCNN) model is imported. The model is trained by dividing fracture defects into 5 common categories, and after entering the pre-processed images, the DCNN network structure outputs the defect locations. A total of 997 rib fractures were found in 350 test set chest CT images, with 24 false-positive cases and 64 false-negative cases in the DCNN model. The accuracy of the diagnosis of rib fractures by low-senior physicians (93.2%) was lower than that of the DCNN model (95.6%) With the assistance of the DCNN model, the accuracy of the diagnosis of low-senior physicians increased (94.9%), and there was no significant difference (94.9%) between the DCNN model and the accuracy of the diagnosis of the low-senior physicians assisted by the DCNN model (95.5%). The recall rate (83.8%) for low-senior physicians to diagnose rib fractures was lower than that in the DCNN model (91.1%), and the recall rate for physician diagnosis was significantly higher (93.8%) with the assistance of the DCNN model. The average diagnostic time for low-senior physicians was (156.0 ± 31.6)s, while the diagnosis of rib fractures in the DCNN model was only (4.9 ± 1.5) s, and the diagnostic time for physicians with the assistance of the DCNN model could be shortened to (41.3 ± 7.2) s. After the CT image is extracted by HourglassNet and Inception features, it is fed into the DCNN model. The DCNN model can accurately locate and diagnose rib fractures on chest CT images, significantly shortening the diagnostic time and reducing the rate of missed diagnosis and misdiagnosis. Deep learning makes it feasible to improve the efficiency of diagnosing rib fracture defects in chest CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
划水的鱼完成签到 ,获得积分10
刚刚
酷炫的八宝粥完成签到,获得积分10
刚刚
东东呀发布了新的文献求助10
刚刚
1秒前
炖地瓜发布了新的文献求助10
4秒前
高c完成签到,获得积分10
5秒前
6秒前
繁荣的凝荷完成签到 ,获得积分10
9秒前
斯文败类应助程雯慧采纳,获得10
10秒前
11秒前
11秒前
星辰大海应助无敌通采纳,获得10
11秒前
biogarfield发布了新的文献求助30
12秒前
yang应助Hu采纳,获得30
14秒前
15秒前
勤劳白枫完成签到 ,获得积分10
16秒前
css发布了新的文献求助10
18秒前
程雯慧发布了新的文献求助10
20秒前
21秒前
啦啦啦完成签到,获得积分10
22秒前
22秒前
科研通AI5应助小何采纳,获得10
23秒前
css完成签到,获得积分10
23秒前
超级万声发布了新的文献求助10
24秒前
24秒前
25秒前
JamesPei应助无限安蕾采纳,获得30
26秒前
坚果发布了新的文献求助10
29秒前
研友_n0kYwL发布了新的文献求助10
29秒前
啦啦啦发布了新的文献求助10
30秒前
蛋宝完成签到,获得积分10
31秒前
共享精神应助Yue采纳,获得10
33秒前
36秒前
我是老大应助山山而川采纳,获得10
37秒前
茸茸茸完成签到,获得积分10
38秒前
汉堡包应助kitwang采纳,获得30
39秒前
炖地瓜完成签到,获得积分10
39秒前
jun发布了新的文献求助10
40秒前
刘觅儿发布了新的文献求助20
42秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781842
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231080
捐赠科研通 3042297
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808