EEG-based cross-subject emotion recognition using multi-source domain transfer learning

计算机科学 学习迁移 人工智能 脑电图 二元分类 模式识别(心理学) 自编码 一般化 代表(政治) 领域(数学分析) 机器学习 情绪分类 人工神经网络 支持向量机 数学 心理学 数学分析 精神科 政治 政治学 法学
作者
Jie Quan,Ying Li,Lingyue Wang,Renjie He,Shuo Yang,Lei Guo
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:84: 104741-104741 被引量:33
标识
DOI:10.1016/j.bspc.2023.104741
摘要

Emotion recognition based on electroencephalogram (EEG) has received extensive attention due to its advantages of being objective and not being controlled by subjective consciousness. However, inter-individual differences lead to insufficient generalization of the model on cross-subject recognition tasks. To solve this problem, a cross-subject emotional EEG classification algorithm based on multi-source domain selection and subdomain adaptation is proposed in this paper. We firstly design a multi-representation variational autoencoder (MR-VAE) to automatically extract emotion related features from multi-channel EEG to obtain a consistent EEG representation with as little prior knowledge as possible. Then, a multi-source domain selection algorithm is proposed to select the existing subjects' EEG data that is closest to the target data distribution in the global distribution and sub-domain distribution, thereby improving the performance of the transfer learning model on the target subject. In this paper, we use a small amount of annotated target data to achieve knowledge transfer and improve the classification accuracy of the model on the target subject as much as possible, which has certain significance in clinical research. The proposed method achieves an average classification accuracy of 92.83% and 79.30% in our experiment on two public datasets SEED and SEED-IV, respectively, which are 26.37% and 22.80% higher than the baseline non-transfer learning method, respectively. Furthermore, we validate the proposed method on other two commonly used public datasets DEAP and DREAMER, which establish SOTA results on the binary classification task of the DEAP dataset. It also achieves comparable accuracy to several transfer learning based methods on the DREAMER dataset. The detailed recognition results on DEAP and DREAMER are in Appendix.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文心同学完成签到,获得积分0
2秒前
御风完成签到,获得积分10
4秒前
qi0625完成签到,获得积分10
5秒前
儒雅的千秋完成签到,获得积分10
5秒前
欣慰的以云完成签到 ,获得积分10
6秒前
孤鸿影98完成签到 ,获得积分10
7秒前
小蟑螂完成签到,获得积分10
8秒前
sscss完成签到,获得积分10
9秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
12秒前
星海种花完成签到 ,获得积分10
14秒前
不可靠月亮完成签到,获得积分10
14秒前
迅速的念芹完成签到 ,获得积分10
16秒前
自觉的凡梦完成签到 ,获得积分10
17秒前
aa完成签到 ,获得积分10
17秒前
kobiy完成签到 ,获得积分10
19秒前
Docgyj完成签到 ,获得积分0
22秒前
俊逸吐司完成签到 ,获得积分10
23秒前
周全完成签到 ,获得积分10
24秒前
huichuanyin完成签到 ,获得积分10
25秒前
Keyuuu30完成签到,获得积分0
29秒前
传奇3应助提提在干嘛采纳,获得10
29秒前
一丁点可爱完成签到,获得积分10
31秒前
gy完成签到 ,获得积分10
33秒前
可靠月亮完成签到,获得积分10
33秒前
34秒前
蓝桉完成签到 ,获得积分10
35秒前
CC发布了新的文献求助10
39秒前
彭于晏应助CC采纳,获得10
44秒前
48秒前
相南相北完成签到 ,获得积分10
51秒前
smz完成签到 ,获得积分10
54秒前
微雨若,,完成签到 ,获得积分10
57秒前
66完成签到 ,获得积分10
59秒前
const完成签到,获得积分10
1分钟前
yujie完成签到 ,获得积分10
1分钟前
酒剑仙完成签到,获得积分10
1分钟前
1分钟前
1分钟前
339564965完成签到,获得积分10
1分钟前
YZ完成签到 ,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800980
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329587
捐赠科研通 3063068
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726