已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Adversarial Meta-Training Framework for Cross-Domain Few-Shot Learning

计算机科学 元学习(计算机科学) 人工智能 机器学习 一般化 对抗制 多任务学习 深度学习 任务(项目管理) 最大化 透视图(图形) 主动学习(机器学习) 领域(数学分析) 基于实例的学习 数学分析 数学 管理 微观经济学 经济
作者
Pinzhuo Tian,Shaorong Xie
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 6881-6891 被引量:10
标识
DOI:10.1109/tmm.2022.3215310
摘要

Meta-learning provides a promising way for deep learning models to efficiently learn in few-shot learning. With this capacity, many deep learning systems can be applied in many real applications. However, many existing meta-learning based few-shot learning systems suffer from vulnerable generalization when new tasks are from unseen domains (a.k.a, cross-domain few-shot learning). In this work, we consider this problem from the perspective of designing a model-agnostic meta-training framework to improve the generalization of existing meta-learning methods in cross-domain few-shot learning. In this way, compared with focusing on elaborately designing modules for a specific meta-learning model, our method is endowed with the ability to be compatible with different meta-learning models in various few-shot problems. To achieve this goal, a novel adversarial meta-training framework is proposed. The proposed framework utilizes max-min episodic iteration. In the episode of maximization, our framework focuses on how to dynamically generate appropriate pseudo tasks which benefit learning cross-domain knowledge. In the episode of minimization, our method aims to solve how to help meta-learning model learn cross-task and robust meta-knowledge. To comprehensively evaluate our framework, experiments are conducted on two few-shot learning settings, three meta-learning models, and eight datasets. These results demonstrate that our method is applicable to various meta-learning models in different few-shot learning problems. The superiority of our method is verified compared with existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助ccccx采纳,获得10
3秒前
桐桐应助wise111采纳,获得10
5秒前
隔壁家夏尔完成签到,获得积分20
6秒前
所所应助辛勤的乐曲采纳,获得10
6秒前
时不我待C完成签到,获得积分10
13秒前
13秒前
陈花蕾完成签到 ,获得积分10
15秒前
Lorain完成签到,获得积分10
17秒前
wise111发布了新的文献求助10
18秒前
wlp鹏完成签到,获得积分10
23秒前
28秒前
LiuRuizhe完成签到,获得积分10
31秒前
31秒前
lxl发布了新的文献求助10
33秒前
一丁雨完成签到,获得积分10
33秒前
li完成签到,获得积分20
34秒前
wanci应助热心金鱼采纳,获得10
36秒前
Cynthia完成签到 ,获得积分10
36秒前
天天快乐应助小老板采纳,获得10
36秒前
38秒前
38秒前
39秒前
43秒前
44秒前
荷包蛋发布了新的文献求助10
44秒前
奋斗机器猫完成签到 ,获得积分10
44秒前
CY发布了新的文献求助30
45秒前
小老板发布了新的文献求助10
48秒前
49秒前
儒雅龙完成签到 ,获得积分10
49秒前
sunnyexon完成签到 ,获得积分10
51秒前
开朗的抽屉完成签到 ,获得积分10
52秒前
CY完成签到,获得积分10
53秒前
54秒前
lxl完成签到,获得积分10
55秒前
谁的四级没过完成签到 ,获得积分10
57秒前
griffon完成签到,获得积分10
1分钟前
史前巨怪完成签到,获得积分10
1分钟前
jiangchuansm完成签到,获得积分10
1分钟前
anastasia完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336676
关于积分的说明 10281801
捐赠科研通 3053411
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803571
科研通“疑难数据库(出版商)”最低求助积分说明 761457