Deep Learning for Detection of Periapical Radiolucent Lesions: A Systematic Review and Meta-analysis of Diagnostic Test Accuracy

医学 置信区间 诊断优势比 荟萃分析 优势比 分级(工程) 梅德林 诊断试验中的似然比 出版偏见 射线照相术 逻辑回归 系统回顾 牙科 人工智能 放射科 内科学 计算机科学 工程类 土木工程 法学 政治学
作者
Soroush Sadr,Hossein Mohammad‐Rahimi,Saeed Reza Motamedian,Samira Zahedrozegar,Parisa Motie,Shankeeth Vinayahalingam,Omid Dianat,Ali Nosrat
出处
期刊:Journal of Endodontics [Elsevier BV]
卷期号:49 (3): 248-261.e3 被引量:38
标识
DOI:10.1016/j.joen.2022.12.007
摘要

The aim of this systematic review and meta-analysis was to investigate the overall accuracy of deep learning models in detecting periapical (PA) radiolucent lesions in dental radiographs, when compared to expert clinicians.Electronic databases of Medline (via PubMed), Embase (via Ovid), Scopus, Google Scholar, and arXiv were searched. Quality of eligible studies was assessed by using Quality Assessment and Diagnostic Accuracy Tool-2. Quantitative analyses were conducted using hierarchical logistic regression for meta-analyses on diagnostic accuracy. Subgroup analyses on different image modalities (PA radiographs, panoramic radiographs, and cone beam computed tomographic images) and on different deep learning tasks (classification, segmentation, object detection) were conducted. Certainty of evidence was assessed by using Grading of Recommendations Assessment, Development, and Evaluation system.A total of 932 studies were screened. Eighteen studies were included in the systematic review, out of which 6 studies were selected for quantitative analyses. Six studies had low risk of bias. Twelve studies had risk of bias. Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of included studies (all image modalities; all tasks) were 0.925 (95% confidence interval [CI], 0.862-0.960), 0.852 (95% CI, 0.810-0.885), 6.261 (95% CI, 4.717-8.311), 0.087 (95% CI, 0.045-0.168), and 71.692 (95% CI, 29.957-171.565), respectively. No publication bias was detected (Egger's test, P = .82). Grading of Recommendations Assessment, Development and Evaluationshowed a "high" certainty of evidence for the studies included in the meta-analyses.Compared to expert clinicians, deep learning showed highly accurate results in detecting PA radiolucent lesions in dental radiographs. Most studies had risk of bias. There was a lack of prospective studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姽婳wy发布了新的文献求助10
1秒前
2秒前
水若冰寒发布了新的文献求助10
4秒前
Lucas应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
D_Daying发布了新的文献求助10
7秒前
在水一方应助竹马子采纳,获得10
8秒前
领导范儿应助淡然灯泡采纳,获得10
8秒前
9秒前
Fly完成签到 ,获得积分10
9秒前
chiyu完成签到,获得积分10
10秒前
刚刚好完成签到,获得积分10
10秒前
水若冰寒完成签到,获得积分10
11秒前
14秒前
xxx发布了新的文献求助10
19秒前
19秒前
yihuifa完成签到 ,获得积分10
22秒前
阿玉发布了新的文献求助100
23秒前
单薄怜寒完成签到 ,获得积分10
27秒前
Ansels发布了新的文献求助20
28秒前
32秒前
超级鸡车完成签到,获得积分10
33秒前
玄之又玄完成签到,获得积分10
34秒前
双青豆完成签到 ,获得积分10
35秒前
τ涛发布了新的文献求助10
37秒前
38秒前
CodeCraft应助D_Daying采纳,获得10
38秒前
所所应助xxx采纳,获得10
39秒前
Ansels完成签到,获得积分10
39秒前
章鱼完成签到,获得积分10
39秒前
研友_LB1rk8完成签到,获得积分10
41秒前
绿兔子完成签到,获得积分10
42秒前
动漫大师发布了新的文献求助10
43秒前
47秒前
繁荣的代秋完成签到 ,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776445
求助须知:如何正确求助?哪些是违规求助? 3321879
关于积分的说明 10208121
捐赠科研通 3037207
什么是DOI,文献DOI怎么找? 1666578
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872