Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision

标杆管理 灵敏度(控制系统) 计算机科学 数据挖掘 互补性(分子生物学) 集合(抽象数据类型) 计算生物学 生物 工程类 遗传学 电子工程 业务 营销 程序设计语言
作者
Marieke Vromman,Jasper Anckaert,Stefania Bortoluzzi,Alessia Buratin,Chia-Ying Chen,Qinjie Chu,Trees‐Juen Chuang,Roozbeh Dehghannasiri,Christoph Dieterich,Xin Dong,Paul Flicek,Enrico Gaffo,Wanjun Gu,Chunjiang He,Steve Hoffmann,Osagie Izuogu,Michael S. Jackson,Tobias Jakobi,Eric C. Lai,Justine Nuytens
标识
DOI:10.1101/2022.12.06.519083
摘要

Abstract The detection of circular RNA molecules (circRNAs) is typically based on short-read RNA sequencing data processed by computational detection tools. During the last decade, a plethora of such tools have been developed, but a systematic comparison with orthogonal validation is missing. Here, we set up a circRNA detection tool benchmarking study, in which 16 tools were used and detected over 315,000 unique circRNAs in three deeply sequenced human cell types. Next, 1,516 predicted circRNAs were empirically validated using three orthogonal methods. Generally, tool-specific precision values are high and similar (median of 98.8%, 96.3%, and 95.5% for qPCR, RNase R, and amplicon sequencing, respectively) whereas the sensitivity and number of predicted circRNAs (ranging from 1,372 to 58,032) are the most significant tool differentiators. Furthermore, we demonstrate the complementarity of tools through the increase in detection sensitivity by considering the union of highly-precise tool combinations while keeping the number of false discoveries low. Finally, based on the benchmarking results, recommendations are put forward for circRNA detection and validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gao发布了新的文献求助10
刚刚
sin_Lee完成签到,获得积分10
刚刚
angel发布了新的文献求助10
刚刚
遇见发布了新的文献求助10
1秒前
活泼的飞扬完成签到,获得积分10
2秒前
齐夜白完成签到,获得积分10
2秒前
Japrin完成签到,获得积分10
2秒前
顾矜应助敏感的山晴采纳,获得10
2秒前
3秒前
02完成签到,获得积分10
4秒前
shw完成签到,获得积分10
4秒前
flash完成签到,获得积分10
5秒前
Zeng完成签到,获得积分10
5秒前
hetao286发布了新的文献求助10
6秒前
信徒发布了新的文献求助10
7秒前
7秒前
xuan完成签到,获得积分10
7秒前
7秒前
合适的落落完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
PWG完成签到,获得积分10
8秒前
英俊的胜完成签到,获得积分10
8秒前
情怀应助欢喜孤风采纳,获得10
9秒前
科研通AI5应助妙aaa采纳,获得10
9秒前
Cui完成签到,获得积分10
9秒前
georgia_qiao完成签到,获得积分10
10秒前
脑洞疼应助睿籽采纳,获得10
10秒前
10秒前
10秒前
直率心锁发布了新的文献求助10
10秒前
11秒前
范范完成签到,获得积分10
11秒前
11秒前
12秒前
STZHEN完成签到,获得积分10
12秒前
嘻嘻完成签到,获得积分10
12秒前
cqnuly完成签到,获得积分10
12秒前
ding应助pantutu采纳,获得10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834177
求助须知:如何正确求助?哪些是违规求助? 3376774
关于积分的说明 10494951
捐赠科研通 3096188
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820249
科研通“疑难数据库(出版商)”最低求助积分说明 771915