纤维素
离子键合
材料科学
超分子化学
离子
膜
离子液体
纳米技术
可扩展性
离子运输机
纳米纤维素
离子电导率
化学工程
计算机科学
分子
化学
有机化学
电极
催化作用
物理化学
工程类
数据库
电解质
生物化学
作者
Qi Dong,Xin Zhang,Ji Qian,Shuaiming He,Yimin Mao,Alexandra H. Brozena,Ye Zhang,Travis P. Pollard,Oleg Borodin,Yanbin Wang,Bhargav Sai Chava,Siddhartha Das,Peter Y. Zavalij,Carlo U. Segre,Dongyang Zhu,Lin Xu,Yanliang Liang,Yan Yao,Robert M. Briber,Tian Li
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2022-12-09
卷期号:8 (49): eadd2031-eadd2031
被引量:64
标识
DOI:10.1126/sciadv.add2031
摘要
Supramolecular frameworks have been widely synthesized for ion transport applications. However, conventional approaches of constructing ion transport pathways in supramolecular frameworks typically require complex processes and display poor scalability, high cost, and limited sustainability. Here, we report the scalable and cost-effective synthesis of an ion-conducting (e.g., Na + ) cellulose-derived supramolecule (Na-CS) that features a three-dimensional, hierarchical, and crystalline structure composed of massively aligned, one-dimensional, and ångström-scale open channels. Using wood-based Na-CS as a model material, we achieve high ionic conductivities (e.g., 0.23 S/cm in 20 wt% NaOH at 25 °C) even with a highly dense microstructure, in stark contrast to conventional membranes that typically rely on large pores (e.g., submicrometers to a few micrometers) to obtain comparable ionic conductivities. This synthesis approach can be universally applied to a variety of cellulose materials beyond wood, including cotton textiles, fibers, paper, and ink, which suggests excellent potential for a number of applications such as ion-conductive membranes, ionic cables, and ionotronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI