ESVT: Event-based Streaming Vision Transformer for Challenging Object Detection

计算机科学 目标检测 人工智能 计算机视觉 深度学习 杠杆(统计) 事件(粒子物理) 模式识别(心理学) 量子力学 物理
作者
Shilong Jing,Guangsha Guo,Xianda Xu,Yuchen Zhao,Hechong Wang,Hengyi Lv,Feng Yang,Yisa Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-13
标识
DOI:10.1109/tgrs.2025.3527474
摘要

Object detection is a crucial task in the field of remote sensing. Currently, frame-based algorithms have demonstrated impressive performance. However, research on remote sensing applying event cameras has not yet been conducted. Meanwhile, there are still three issues to address: 1) Remote sensing targets are often disrupted by complex backgrounds, resulting in poor detection performance, especially in extremely challenging environments (e.g., low-light, motion blur, and occlusion scenarios). 2) Mainstream deep learning neural networks primarily employ discrete random sampling training strategies, which limits the system to leverage continuous temporal information. 3) The distribution shift problem arising from uneven data in streaming training poses challenges for temporal object detection. In this work, we provide the Remote Sensing Event-based Object Detection Dataset (RSEOD), which is the first remote sensing dataset utilizing event cameras while including various intractable scenarios, providing a novel perspective for object detection in challenging scenarios. Additionally, we innovatively propose an event-based streaming training strategy that utilizes asynchronous event streams to address detection challenges caused by prolonged occlusion and out-of-focus. Moreover, we introduce a reversible normalization criterion (RevNorm) to eliminate non-stationary information in temporal data, proposing a Streaming Bidirectional Feature Pyramid Network (SBFPN) to facilitate recursive data transmission along the temporal dimension. Extensive experiments on the RSEOD Dataset demonstrate that our method achieves 38.1% mAP@0.5:0.95 and 55.8% mAP@0.5, outperforming all other state-of-the-art object detection approaches (e.g., YOLOv8, YOLOv10, YOLOv11, DINO, RTDETR, RTDETRv2, SODFormer). The dataset and code are released at https://github.com/Jushl/ESVT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momosci完成签到,获得积分10
刚刚
titan完成签到,获得积分10
2秒前
苦瓜不苦完成签到,获得积分10
2秒前
12秒前
浮云发布了新的文献求助30
17秒前
学术小白发布了新的文献求助10
17秒前
18秒前
titan关注了科研通微信公众号
21秒前
CY发布了新的文献求助10
21秒前
酷酷妙梦完成签到,获得积分10
23秒前
一支烤串发布了新的文献求助50
25秒前
情怀应助fagfagsf采纳,获得10
25秒前
小马甲应助学术通zzz采纳,获得10
26秒前
26秒前
赘婿应助学术通zzz采纳,获得10
26秒前
科研通AI2S应助zzz采纳,获得10
27秒前
酷炫的毛巾应助学术通zzz采纳,获得10
33秒前
深情安青应助学术通zzz采纳,获得10
33秒前
昏睡的蟠桃应助学术通zzz采纳,获得80
33秒前
大模型应助学术通zzz采纳,获得10
33秒前
乐乐应助学术通zzz采纳,获得10
33秒前
33秒前
ding应助学术通zzz采纳,获得10
33秒前
华仔应助学术通zzz采纳,获得10
33秒前
英姑应助学术通zzz采纳,获得10
33秒前
今后应助学术通zzz采纳,获得100
33秒前
善学以致用应助学术通zzz采纳,获得10
34秒前
隐形曼青应助Cindy采纳,获得10
34秒前
老实乌冬面完成签到 ,获得积分10
36秒前
lshao完成签到 ,获得积分10
37秒前
enoch完成签到 ,获得积分10
37秒前
桐桐应助Stephen采纳,获得10
39秒前
39秒前
香蕉觅云应助高高冰蝶采纳,获得10
39秒前
雪白的如天完成签到 ,获得积分10
40秒前
40秒前
单纯的爆米花完成签到 ,获得积分10
40秒前
金红水晶完成签到 ,获得积分10
42秒前
学术小白完成签到,获得积分20
42秒前
王先生完成签到 ,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323535
关于积分的说明 10214771
捐赠科研通 3038698
什么是DOI,文献DOI怎么找? 1667611
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315