Machine learning and deep learning algorithms in stroke medicine: a systematic review of hemorrhagic transformation prediction models

机器学习 人工智能 支持向量机 随机森林 算法 梯度升压 逻辑回归 医学 人工神经网络 标杆管理 计算机科学 营销 业务
作者
Mahbod Issaiy,Diana Zarei,Shahriar Kolahi,David S. Liebeskind
出处
期刊:Journal of Neurology [Springer Science+Business Media]
卷期号:272 (1) 被引量:2
标识
DOI:10.1007/s00415-024-12810-6
摘要

Abstract Background Acute ischemic stroke (AIS) is a major cause of morbidity and mortality, with hemorrhagic transformation (HT) further worsening outcomes. Traditional scoring systems have limited predictive accuracy for HT in AIS. Recent research has explored machine learning (ML) and deep learning (DL) algorithms for stroke management. This study evaluates and compares the effectiveness of ML and DL algorithms in predicting HT post-AIS, benchmarking them against conventional models. Methods A systematic search was conducted across PubMed, Embase, Web of Science, Scopus, and IEEE, initially yielding 1421 studies. After screening, 24 studies met the inclusion criteria. The Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the quality of these studies, and a qualitative synthesis was performed due to heterogeneity in the study design. Results The included studies featured diverse ML and DL algorithms, with Logistic Regression (LR), Support Vector Machine (SVM), and Random Forest (RF) being the most common. Gradient boosting (GB) showed superior performance. Median Area Under the Curve (AUC) values were 0.91 for GB, 0.83 for RF, 0.77 for LR, and 0.76 for SVM. Neural networks had a median AUC of 0.81 and convolutional neural networks (CNNs) had a median AUC of 0.91. ML techniques outperformed conventional models, particularly those integrating clinical and imaging data. Conclusions ML and DL models significantly surpass traditional scoring systems in predicting HT. These advanced models enhance clinical decision-making and improve patient outcomes. Future research should address data expansion, imaging protocol standardization, and model transparency to enhance stroke outcomes further.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyh295352318完成签到 ,获得积分10
刚刚
深情安青应助Jeff采纳,获得10
1秒前
香蕉觅云应助dery采纳,获得10
2秒前
科研通AI5应助小小米采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
英姑应助attitude采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
小蘑菇应助ChenYX采纳,获得10
5秒前
keke完成签到,获得积分10
5秒前
6秒前
10秒前
10秒前
isk关闭了isk文献求助
10秒前
11秒前
12秒前
狗思维发布了新的文献求助10
12秒前
乐唔发布了新的文献求助30
15秒前
Ava应助在人类采纳,获得10
21秒前
22秒前
优秀的芯完成签到,获得积分10
22秒前
25秒前
外向青筠完成签到 ,获得积分10
25秒前
孙燕应助桃李春风一杯酒采纳,获得10
27秒前
attitude发布了新的文献求助10
28秒前
jackten发布了新的文献求助10
29秒前
31秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843083
求助须知:如何正确求助?哪些是违规求助? 3385237
关于积分的说明 10539696
捐赠科研通 3105846
什么是DOI,文献DOI怎么找? 1710642
邀请新用户注册赠送积分活动 823719
科研通“疑难数据库(出版商)”最低求助积分说明 774205