亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning quantitatively characterizes the deformation and destruction of explosive molecules

爆炸物 起爆 分子动力学 分子 化学物理 体积热力学 化学 材料科学 纳米技术 计算化学 物理 热力学 有机化学
作者
kaining zhang,Lang Chen,Teng Zhang,Jianying Lu,Danyang Liu,Junying Wu
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:25 (12): 8692-8704
标识
DOI:10.1039/d2cp04623g
摘要

Although explosives have been widely used in mines, road development, old building demolishing, and munition explosions; currently, how chemical bonds between atoms break and recombine, how the molecular structure is deformed and destroyed, how the reaction product molecules are formed, and the details for this rapid change process in explosive reactions are not yet fully understood, which limits the full use of explosive energy and safer use of explosives. This paper presents a quantitative model of molecular structure deformation using machine learning algorithms as well as a qualitative model of its relationship with molecular structure destruction, based on a molecular dynamics simulation and detailed analysis of the shock-loaded ε-CL-20, providing new perspectives for explosive community research. Specifically, the quantitative model of molecular structure deformation establishes the quantitative relationship between the molecular volume change and molecular position change, and between molecular distance change and molecular volume change using the machine learning algorithms such as Delaunay triangulation, clustering, and gradient descent. We find that the molecular spacing in explosives is strongly compressed after being shocked, and the peripheral structure can shrink inward, which is beneficial to keep the cage structure stable. When the peripheral structure is compressed to a certain extent, the cage structure volume begins to expand and is then destroyed. In addition, hydrogen atom transfer occurs within the explosive molecule. This study amplifies the structural changes and the chemical reaction process for explosive molecules after being strongly compressed by a shock wave, which can enrich the knowledge of the real detonation reaction process. The analysis method based on quantitative characterization using machine learning proposed in this study can also be used to analyze the microscopic reaction mechanism in other materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不如一默完成签到,获得积分10
刚刚
史前巨怪完成签到,获得积分10
10秒前
打打应助科研通管家采纳,获得10
21秒前
小屋藏夏完成签到,获得积分10
23秒前
哎呀我去我的天完成签到 ,获得积分10
38秒前
Ava应助123456采纳,获得10
1分钟前
上官若男应助易琚采纳,获得10
1分钟前
愤怒的海菡完成签到 ,获得积分20
1分钟前
1分钟前
Hu发布了新的文献求助10
2分钟前
2分钟前
Rose发布了新的文献求助10
2分钟前
3分钟前
3分钟前
张根山发布了新的文献求助10
3分钟前
张根山完成签到,获得积分10
3分钟前
Ferry完成签到 ,获得积分10
3分钟前
小学生的练习簿完成签到,获得积分10
3分钟前
8OK发布了新的文献求助20
3分钟前
jyy发布了新的文献求助10
3分钟前
寻道图强应助mashibeo采纳,获得30
3分钟前
jyy完成签到,获得积分10
3分钟前
4分钟前
4分钟前
WerWu应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
Estella发布了新的文献求助10
4分钟前
4分钟前
梅倪完成签到,获得积分10
4分钟前
4分钟前
123456发布了新的文献求助10
4分钟前
寻道图强完成签到,获得积分0
5分钟前
nanmu完成签到 ,获得积分10
5分钟前
8OK关闭了8OK文献求助
6分钟前
脑洞疼应助ww采纳,获得10
6分钟前
魏修农完成签到 ,获得积分10
6分钟前
情怀应助Estella采纳,获得10
6分钟前
6分钟前
6分钟前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
Chinese-English Translation Lexicon Version 3.0 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2395694
求助须知:如何正确求助?哪些是违规求助? 2098663
关于积分的说明 5289031
捐赠科研通 1826023
什么是DOI,文献DOI怎么找? 910431
版权声明 559974
科研通“疑难数据库(出版商)”最低求助积分说明 486595