Intensity and phase stacked analysis of a Φ-OTDR system using deep transfer learning and recurrent neural networks

计算机科学 光时域反射计 模式识别(心理学) 卷积神经网络 人工智能 特征提取 学习迁移 人工神经网络 特征(语言学) 深度学习 传递函数 光纤 光纤传感器 光纤分路器 电信 语言学 哲学 电气工程 工程类
作者
Ceyhun Efe Kayan,Kıvılcım Yüksel,Abdurrahman Gümüş
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:62 (7): 1753-1753 被引量:9
标识
DOI:10.1364/ao.481757
摘要

Distributed acoustic sensors (DAS) are effective apparatuses that are widely used in many application areas for recording signals of various events with very high spatial resolution along optical fibers. To properly detect and recognize the recorded events, advanced signal processing algorithms with high computational demands are crucial. Convolutional neural networks (CNNs) are highly capable tools to extract spatial information and are suitable for event recognition applications in DAS. Long short-term memory (LSTM) is an effective instrument to process sequential data. In this study, a two-stage feature extraction methodology that combines the capabilities of these neural network architectures with transfer learning is proposed to classify vibrations applied to an optical fiber by a piezoelectric transducer. First, the differential amplitude and phase information is extracted from the phase-sensitive optical time domain reflectometer (Φ-OTDR) recordings and stored in a spatiotemporal data matrix. Then, a state-of-the-art pre-trained CNN without dense layers is used as a feature extractor in the first stage. In the second stage, LSTMs are used to further analyze the features extracted by the CNN. Finally, a dense layer is used to classify the extracted features. To observe the effect of different CNN architectures, the proposed model is tested with five state-of-the-art pre-trained models (VGG-16, ResNet-50, DenseNet-121, MobileNet, and Inception-v3). The results show that using the VGG-16 architecture in the proposed framework manages to obtain a 100% classification accuracy in 50 trainings and got the best results on the Φ-OTDR dataset. The results of this study indicate that pre-trained CNNs combined with LSTM are very suitable to analyze differential amplitude and phase information represented in a spatiotemporal data matrix, which is promising for event recognition operations in DAS applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助浅学者采纳,获得10
1秒前
ANDRT完成签到,获得积分10
3秒前
asdzsx发布了新的文献求助10
4秒前
CharlesL完成签到,获得积分10
4秒前
脑洞疼应助何鸿成采纳,获得50
4秒前
haha发布了新的文献求助30
4秒前
打工人一枚完成签到,获得积分10
5秒前
7秒前
CodeCraft应助高兴的若雁采纳,获得10
9秒前
10秒前
11秒前
Aaaa完成签到,获得积分20
14秒前
科研林完成签到,获得积分10
14秒前
不倦应助枯藤老柳树采纳,获得10
15秒前
15秒前
16秒前
asdzsx完成签到,获得积分10
17秒前
18秒前
SnaiLinsist发布了新的文献求助10
19秒前
hsy发布了新的文献求助10
19秒前
雨衣发布了新的文献求助10
19秒前
Hello应助远方采纳,获得10
20秒前
21秒前
22秒前
liming完成签到,获得积分10
23秒前
23秒前
Melody发布了新的文献求助30
24秒前
24秒前
SteveRogers完成签到,获得积分10
27秒前
27秒前
30秒前
30秒前
SteveRogers发布了新的文献求助10
31秒前
35秒前
青山玉发布了新的文献求助10
36秒前
科研通AI5应助公西天抒采纳,获得10
36秒前
37秒前
26小梨完成签到,获得积分20
37秒前
共享精神应助科研通管家采纳,获得10
37秒前
田様应助科研通管家采纳,获得10
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790999
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276539
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761056