nBEST: Deep-learning-based non-human primates Brain Extraction and Segmentation Toolbox across ages, sites and species

工具箱 分割 计算机科学 人工智能 稳健性(进化) 深度学习 概化理论 神经影像学 人脑 模式识别(心理学) 机器学习 生物 神经科学 心理学 发展心理学 生物化学 基因 程序设计语言
作者
Tao Zhong,Xueyang Wu,Shujun Liang,Zhenyuan Ning,Li Wang,Yuyu Niu,Shihua Yang,Zhuang Kang,Qianjin Feng,Gang Li,Yu Zhang
出处
期刊:NeuroImage [Elsevier BV]
卷期号:295: 120652-120652
标识
DOI:10.1016/j.neuroimage.2024.120652
摘要

Accurate processing and analysis of non-human primate (NHP) brain magnetic resonance imaging (MRI) serves an indispensable role in understanding brain evolution, development, aging, and diseases. Despite the accumulation of diverse NHP brain MRI datasets at various developmental stages and from various imaging sites/scanners, existing computational tools designed for human MRI typically perform poor on NHP data, due to huge differences in brain sizes, morphologies, and imaging appearances across species, sites, and ages, highlighting the imperative for NHP-specialized MRI processing tools. To address this issue, in this paper, we present a robust, generic, and fully automated computational pipeline, called non-human primates Brain Extraction and Segmentation Toolbox (nBEST), whose main functionality includes brain extraction, non-cerebrum removal, and tissue segmentation. Building on cutting-edge deep learning techniques by employing lifelong learning to flexibly integrate data from diverse NHP populations and innovatively constructing 3D U-NeXt architecture, nBEST can well handle structural NHP brain MR images from multi-species, multi-site, and multi-developmental-stage (from neonates to the elderly). We extensively validated nBEST based on, to our knowledge, the largest assemblage dataset in NHP brain studies, encompassing 1,469 scans with 11 species (e.g., rhesus macaques, cynomolgus macaques, chimpanzees, marmosets, squirrel monkeys, etc.) from 23 independent datasets. Compared to alternative tools, nBEST outperforms in precision, applicability, robustness, comprehensiveness, and generalizability, greatly benefiting downstream longitudinal, cross-sectional, and cross-species quantitative analyses. We have made nBEST an open-source toolbox (https://github.com/TaoZhong11/nBEST) and we are committed to its continual refinement through lifelong learning with incoming data to greatly contribute to the research field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
livian发布了新的文献求助10
刚刚
郑冰冰完成签到,获得积分10
刚刚
xiaoliu完成签到,获得积分20
刚刚
YY完成签到,获得积分10
刚刚
badada完成签到,获得积分10
1秒前
雪蛤完成签到,获得积分20
1秒前
11发布了新的文献求助30
1秒前
2秒前
efil完成签到,获得积分10
2秒前
嘻嘻发布了新的文献求助30
2秒前
怕黑的夜完成签到,获得积分20
2秒前
Kyogoku发布了新的文献求助10
3秒前
大傻春完成签到 ,获得积分10
3秒前
舒适的晓旋完成签到,获得积分10
3秒前
悦yue发布了新的文献求助10
3秒前
peizong发布了新的文献求助10
3秒前
4秒前
陶子完成签到,获得积分10
4秒前
led完成签到,获得积分10
4秒前
ww完成签到,获得积分20
4秒前
4秒前
灵灵完成签到,获得积分10
4秒前
端庄谷南完成签到 ,获得积分10
5秒前
刻苦亦丝发布了新的文献求助20
5秒前
凶狠的猎豹完成签到,获得积分10
5秒前
小池同学完成签到,获得积分10
5秒前
ertredffg发布了新的文献求助10
6秒前
chem is try发布了新的文献求助10
6秒前
Joyj99完成签到,获得积分10
6秒前
完美世界应助shiyu采纳,获得10
6秒前
小白完成签到,获得积分10
8秒前
漫梦qiqi完成签到,获得积分20
8秒前
怕黑的夜发布了新的文献求助10
8秒前
旅行者完成签到,获得积分10
9秒前
余生发布了新的文献求助10
9秒前
9秒前
希望天下0贩的0应助user采纳,获得10
10秒前
大菊完成签到,获得积分10
10秒前
魁梧的元芹完成签到,获得积分20
11秒前
11秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
2023 ASHRAE Handbook HVAC Applications (SI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872273
求助须知:如何正确求助?哪些是违规求助? 3414526
关于积分的说明 10689720
捐赠科研通 3138874
什么是DOI,文献DOI怎么找? 1731816
邀请新用户注册赠送积分活动 835004
科研通“疑难数据库(出版商)”最低求助积分说明 781624