清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Risk analysis of lithium-ion battery accidents based on physics-informed data-driven Bayesian networks

锂(药物) 贝叶斯概率 电池(电) 离子 贝叶斯网络 计算机科学 数据科学 物理 心理学 医学 机器学习 人工智能 内科学 量子力学 功率(物理)
作者
Huixing Meng,Mengqian Hu,Zihan Kong,Yiming Niu,Jiali Liang,Zhenyu Nie,Jinduo Xing
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:251: 110294-110294 被引量:14
标识
DOI:10.1016/j.ress.2024.110294
摘要

The catastrophic consequences of lithium-ion battery (LIB) accidents have attracted high social attention. Accordingly, risk analysis is indispensable for risk prevention and control of LIBs. However, it is difficult to establish a recognized physics-informed risk analysis model due to the complex material characteristics and aging mechanisms of LIBs. Meanwhile, data-driven approach requires historical information of LIBs and does not rely on knowledge of the internal mechanisms of LIBs. This study proposes a method integrating the physics-informed Bayesian network (BN) (mapping from fault tree) and data-driven BN (learning from data) to conduct risk analysis of LIBs. First, we establish physics-informed and data-driven BNs. Subsequently, we bridge physics-informed and data-driven BNs to establish a Bayesian network for risk analysis of LIB accidents. Second, we set up safety barriers in the system, including detectors, emergency response, and firefighting facilities. Third, we evaluate the effectiveness of safety barriers. We validate the proposed model using data from LIBs in air transportation. Our results indicate that safety barriers can reduce the accidental risk of LIBs. Eventually, we propose suggestions for the risk control of LIBs in air transportation. This study can provide theoretical basis for the risk prevention and control of LIB accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
F7erxl完成签到,获得积分10
24秒前
39秒前
51秒前
Leo完成签到 ,获得积分10
58秒前
knn完成签到 ,获得积分10
1分钟前
喜悦的香之完成签到 ,获得积分10
1分钟前
稻子完成签到 ,获得积分10
1分钟前
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
实力不允许完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
沉沉完成签到 ,获得积分0
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
小嚣张完成签到,获得积分10
4分钟前
bc应助科研通管家采纳,获得20
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
6分钟前
bc应助科研通管家采纳,获得10
6分钟前
6分钟前
满意人英完成签到,获得积分10
6分钟前
6分钟前
自然幼翠发布了新的文献求助30
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
firesquall发布了新的文献求助10
7分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800936
求助须知:如何正确求助?哪些是违规求助? 3346489
关于积分的说明 10329428
捐赠科研通 3063031
什么是DOI,文献DOI怎么找? 1681317
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714