Insights into the Optimization of Catalytic Active Sites in Lithium–Sulfur Batteries

硫黄 催化作用 锂(药物) 化学 有机化学 心理学 精神科
作者
Peng Wang,Baojuan Xi,Shenglin Xiong
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (15): 2093-2104 被引量:9
标识
DOI:10.1021/acs.accounts.4c00244
摘要

ConspectusLithium-sulfur batteries (LSBs), recognized for their high energy density and cost-effectiveness, offer significant potential for advancement in energy storage. However, their widespread deployment remains hindered by challenges such as sluggish reaction kinetics and the shuttle effect of lithium polysulfides (LiPSs). By the introduction of catalytic materials, the effective adsorption of LiPSs, smooth surface migration behavior, and significantly reduced conversion energy barriers are expected to be achieved, thereby sharpening electrochemical reaction kinetics and fundamentally addressing the aforementioned challenges. However, driven by practical application targets, the demand for higher loadings and reduced electrolyte parameters inevitably exacerbates the burden on catalytic materials during their service. Additionally, given that catalytic materials contribute negligible electrochemical capacity, their incorporation inevitably increases the mass of nonactive components for reducing the energy density of LSBs. A meticulous insight into the lithium-sulfur catalytic reaction reveals that the conversion of LiPSs is dominated by active sites on the surfaces of catalytic materials. These microregions provide the necessary electron and ion transport for the conversion reaction of LiPSs, with their efficacy and quantity directly impacting the conversion efficiency. In light of these considerations, the strategic optimization of active sites emerges as a paramount pathway toward promoting the performance of LSBs while concurrently mitigating unnecessary mass. Here, we outline three strategies developed by our group to optimize active sites of catalytic materials: (1) Augmenting active sites by customizing structural modulation and precise dimensional control to maximize exposure. Emphasis has been placed on the approaches for material synthesis and the essence of reactions for achieving this strategy. (2) Regulating the microenvironment of active sites by integrating the coordination refinement, long-range atomic interactions, metal-support interactions, and other electronic regulation strategies, thereby providing an elevation in the intrinsic catalytic performance. (3) Implementing a self-cleaning mechanism for active sites to counteract deactivation by designing a tandem adsorption-migration-transformation pathway of sulfur contained within the molecular domain. Throughout this process, the intrinsic mechanisms driving performance enhancement through active site optimization strategies have been prominently emphasized, which encompass aspects such as electronic structure, atomic composition, and molecular configuration and significantly expand the comprehension of Li-S catalytic chemistry. Subsequently, considerations demanding heightened attention in future processes of active site optimization for catalytic materials have been delineated, including the in situ evolution patterns and resistance to the poisoning of active sites. It is noteworthy that given the similarity between Li-S catalysis chemistry and traditional electrocatalytic processes, this Account elucidates the concept of active site optimization by drawing insights from representative works and our own works in the field of electrocatalysis, which is relatively rare in previous reviews of LSBs. The proposed insights contribute to uncovering the intrinsic mechanisms of Li-S catalysis chemistry and introducing innovative ideas into active site optimization, ultimately advancing energy density and stability in LSBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熬夜猫完成签到,获得积分10
2秒前
Aqua发布了新的文献求助10
2秒前
33ovo完成签到 ,获得积分10
5秒前
Aqua完成签到,获得积分10
7秒前
kk完成签到 ,获得积分10
7秒前
9秒前
RATHER发布了新的文献求助10
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
ED应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
16秒前
17秒前
douning完成签到,获得积分20
17秒前
MeiyanZou完成签到 ,获得积分10
17秒前
霖槿完成签到,获得积分10
18秒前
充电宝应助雪泥鸿爪采纳,获得10
22秒前
douning发布了新的文献求助10
23秒前
23秒前
24秒前
可爱的函函应助RATHER采纳,获得10
24秒前
大橘完成签到 ,获得积分10
29秒前
nat完成签到,获得积分10
30秒前
努力学习ing完成签到 ,获得积分10
32秒前
33秒前
wangbq完成签到 ,获得积分10
33秒前
33秒前
zz完成签到,获得积分10
33秒前
田様应助月亮采纳,获得10
33秒前
科研通AI5应助奋斗怀柔采纳,获得10
36秒前
Ava应助不安的白昼采纳,获得10
37秒前
lina发布了新的文献求助20
38秒前
zz发布了新的文献求助10
38秒前
归尘应助Mn采纳,获得30
42秒前
香香丿完成签到 ,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776482
求助须知:如何正确求助?哪些是违规求助? 3321990
关于积分的说明 10208326
捐赠科研通 3037279
什么是DOI,文献DOI怎么找? 1666628
邀请新用户注册赠送积分活动 797594
科研通“疑难数据库(出版商)”最低求助积分说明 757872