已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Emotional Resonance in Brainwaves: EEG based Classification of Emotional Dynamics

脑电图 动力学(音乐) 计算机科学 人工智能 语音识别 心理学 模式识别(心理学) 神经科学 教育学
作者
K T Manishaa,C. Sridevi,B Kiran,M. Roy
标识
DOI:10.1109/icbsii61384.2024.10564040
摘要

This project focuses on combining various machine learning algorithms to classify emotions based on electroencephalogram (EEG) data. In the fields of affective computing, human-computer interface, and healthcare, emotion recognition is significant. The DREAMER (Database for Emotional Analysis in Music Videos) and GAMEEMO datasets, both of which include EEG signals captured during particular stimuli are used in the study. The two datasets are compared at the initial phase of the project in order to figure out which is the most appropriate for additional investigation. The study involves feature extraction, preprocessing, artifact identification, and dataset comparison analysis after dataset selection. Using the selected dataset, several machine learning techniques are used for emotion classification, which include Decision Tree, Random Forest, AdaBoost, Naïve Bayes, and Linear SVM. The results indicate AdaBoost is effective in classifying emotions with the maximum accuracy of 91.7%. Additionally, Adaboost has a F1 score of 94.1% and precision of 88% which tends to be the highest among other algorithms used. Various performance metrics such as F1 Score, Sensitivity, Specificity, Recall and ROC curve are determined for these algorithms, which classify emotions into stress and non-stress classes. Further studies include exploring multimodal approaches and transfer learning to enhance model performance and accurately predict emotions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
2秒前
默默冬瓜完成签到,获得积分10
3秒前
3秒前
frigidsnap完成签到,获得积分10
3秒前
依托考昔发布了新的文献求助10
4秒前
4秒前
是是是WQ完成签到 ,获得积分0
6秒前
红红火火h完成签到,获得积分10
6秒前
BET发布了新的文献求助10
6秒前
7秒前
qaqzzz发布了新的文献求助50
7秒前
7秒前
123zyuyu发布了新的文献求助10
7秒前
8秒前
8秒前
踏实嚣发布了新的文献求助10
9秒前
mao应助Fan采纳,获得20
9秒前
9秒前
byy完成签到,获得积分10
9秒前
科研助手6应助一路向前采纳,获得10
12秒前
温暖完成签到,获得积分20
12秒前
13秒前
14秒前
cmmmxr发布了新的文献求助10
14秒前
15秒前
温暖发布了新的文献求助10
15秒前
鹿三德完成签到,获得积分10
16秒前
18秒前
dywen完成签到,获得积分10
18秒前
故意的听白完成签到 ,获得积分10
18秒前
19秒前
勤恳凡之发布了新的文献求助10
19秒前
柔弱的问梅完成签到,获得积分10
19秒前
依托考昔完成签到,获得积分10
19秒前
郑思雨完成签到,获得积分20
20秒前
22秒前
dnbe完成签到 ,获得积分10
22秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830163
求助须知:如何正确求助?哪些是违规求助? 3372674
关于积分的说明 10474177
捐赠科研通 3092303
什么是DOI,文献DOI怎么找? 1702050
邀请新用户注册赠送积分活动 818732
科研通“疑难数据库(出版商)”最低求助积分说明 771047