Development of a Distributed Physics‐Informed Deep Learning Hydrological Model for Data‐Scarce Regions

水流 计算机科学 水文模型 分水岭 一般化 离散化 机器学习 流域 地质学 地理 气候学 数学 地图学 数学分析
作者
L. Zhong,Huimin Lei,Jingjing Yang
出处
期刊:Water Resources Research [Wiley]
卷期号:60 (6) 被引量:2
标识
DOI:10.1029/2023wr036333
摘要

Abstract Climate change has exacerbated water stress and water‐related disasters, necessitating more precise streamflow simulations. However, in the majority of global regions, a deficiency of streamflow data constitutes a significant constraint on modeling endeavors. Traditional distributed hydrological models and regionalization approaches have shown suboptimal performance. While current deep learning (DL)‐related models trained on large data sets excel in spatial generalization, the direct applicability of these models in certain regions with unique hydrological processes can be challenging due to the limited representativeness within the training data set. Furthermore, transfer learning DL models pre‐trained on large data sets still necessitate local data for retraining, thereby constraining their applicability. To address these challenges, we present a physics‐informed DL model based on a distributed framework. It involves spatial discretization and the establishment of differentiable hydrological models for discrete sub‐basins, coupled with a differentiable Muskingum method for channel routing. By introducing upstream‐downstream relationships, model errors in sub‐basins propagate through the river network to the watershed outlet, enabling the optimization using limited downstream streamflow data, thereby achieving spatial simulation of ungauged internal sub‐basins. The model, when trained solely on the downstream‐most station, outperforms the distributed hydrological model in streamflow simulation at both the training station and upstream held‐out stations. Additionally, in comparison to transfer learning models, our model requires fewer gauge stations for training, but achieves higher precision in simulating streamflow on spatially held‐out stations, indicating better spatial generalization ability. Consequently, this model offers a novel approach to hydrological simulation in data‐scarce regions, especially those with poor hydrological representativeness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼发布了新的文献求助10
刚刚
2秒前
拼搏寒凡完成签到,获得积分20
2秒前
乐乐应助阿喜采纳,获得10
2秒前
2秒前
3秒前
打打应助哈喽采纳,获得10
4秒前
汀宁完成签到,获得积分20
4秒前
水门发布了新的文献求助10
5秒前
27完成签到,获得积分20
5秒前
6秒前
大个应助NO0809采纳,获得10
6秒前
7秒前
shuqi完成签到 ,获得积分10
7秒前
7秒前
8秒前
ln发布了新的文献求助10
9秒前
hakunamatata完成签到 ,获得积分10
10秒前
beiest发布了新的文献求助200
10秒前
古藤完成签到 ,获得积分10
11秒前
11秒前
tao完成签到 ,获得积分10
14秒前
15秒前
16秒前
安在哉完成签到,获得积分10
18秒前
19秒前
我是老大应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得30
20秒前
丘比特应助科研通管家采纳,获得10
21秒前
泽ze应助科研通管家采纳,获得20
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
21秒前
温柔的耳机完成签到,获得积分10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818939
求助须知:如何正确求助?哪些是违规求助? 3362015
关于积分的说明 10414983
捐赠科研通 3080315
什么是DOI,文献DOI怎么找? 1694152
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768337