Development and Validation of a Model to Predict Secondary Arrhythmia in Patients With Epilepsy

作者
Yulong Li,Zhen Sun,Shen Su,Jun Zhao,Yan-Ping Sun
出处
期刊:CNS Neuroscience & Therapeutics [Wiley]
卷期号:31 (11): e70670-e70670
标识
DOI:10.1111/cns.70670
摘要

ABSTRACT Objective Compared with healthy individuals, epilepsy patients are more prone to arrhythmias, which may contribute to poor prognosis. To enable early identification of this risk, we developed a clinical prognostic prediction model to assess the risk of arrhythmia comorbidity in epilepsy patients, thereby facilitating timely clinical intervention to improve patient outcomes. Methods We retrospectively collected clinical data from epilepsy patients treated at the Affiliated Hospital of Qingdao University between January 2022 and February 2025, including gender, age, medical history, antiseizure medications, electrocardiograms and electroencephalograms. A total of 495 eligible patients were enrolled and randomly divided into development and validation datasets at a 7:3 ratio. Variable selection was performed using LASSO regression with a penalty term, and the selected variables were incorporated into the construction of a logistic regression model. The area under the receiver operating characteristic curve (AUC) and its 95% confidence interval were used to preliminarily evaluate the model's discriminative ability, while cross‐validation and bootstrapping were employed to assess its generalizability. Calibration curves and the Brier score were utilized to evaluate the model's calibration, and decision curve analysis was plotted to analyze the net clinical benefit. Result The C‐indices for the development and validation datasets were 0.737 (95% CI 0.675–0.799) and 0.790 (95% CI: 0.707–0.884), respectively, with an overall C‐index of 0.752 (95% CI: 0.701–0.804). The corresponding sensitivity and specificity were 74.6% and 68.1%, respectively. Finally, a nomogram was constructed for the visual presentation of the predictive model. Conclusion Our predictive model can accurately assess the risk of arrhythmia comorbidity in epilepsy patients, assisting clinicians in early intervention to improve prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gcr完成签到 ,获得积分20
刚刚
1秒前
YYY666发布了新的文献求助10
1秒前
小熊饼干完成签到,获得积分10
1秒前
丘比特应助wanwuzhumu采纳,获得10
2秒前
2秒前
prove应助Any采纳,获得10
2秒前
Xingchen完成签到,获得积分10
2秒前
Yi完成签到,获得积分10
2秒前
2秒前
xiaoqi发布了新的文献求助10
3秒前
超帅凌晴发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
45465465456发布了新的文献求助10
4秒前
Thrive完成签到,获得积分10
4秒前
酷波er应助ee采纳,获得10
4秒前
4秒前
Cecilia完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
喵喵拳完成签到,获得积分10
8秒前
9秒前
领导范儿应助Xingchen采纳,获得20
9秒前
可爱的函函应助红岩采纳,获得10
10秒前
DUOLI完成签到,获得积分20
10秒前
11秒前
hxm完成签到,获得积分10
11秒前
MengjiaZhai完成签到,获得积分10
11秒前
11秒前
11秒前
呆萌冷风发布了新的文献求助10
12秒前
12秒前
冷傲如之完成签到,获得积分10
13秒前
Qixin完成签到 ,获得积分20
14秒前
肘子发布了新的文献求助10
15秒前
xcx发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655855
求助须知:如何正确求助?哪些是违规求助? 4800784
关于积分的说明 15074114
捐赠科研通 4814288
什么是DOI,文献DOI怎么找? 2575593
邀请新用户注册赠送积分活动 1530977
关于科研通互助平台的介绍 1489613