交通拥挤
水准点(测量)
地图匹配
匹配(统计)
计算机科学
数据挖掘
弹道
鉴定(生物学)
基于Kerner三相理论的交通拥堵重构
浮动车数据
交通速度
运输工程
工程类
地理
地图学
数学
全球定位系统
生物
统计
电信
物理
植物
天文
作者
Chenghua Song,Yin Wang,Lintao Wang,Jianwei Wang,Xin Fu
标识
DOI:10.1080/03081060.2024.2306369
摘要
Map matching is a fundamental prerequisite for traffic engineers in detecting congestion using location data represented by trajectory data. Previous studies often revolve around road matching, yet limitations arise from trajectory data quality and map-matching accuracy. This paper introduces a map-independent congestion identification method, involving urban cell network construction, congestion modeling with speed fluctuations, and the exploration of congestion evolution patterns. Finally, we validated our proposed method using Floating Taxi Data (FTD) from Xi'an, China. The result indicates that the method proposed in this study can identify urban traffic congestion and uncover its evolutionary characteristics without relying on maps. In contrast to other metrics, the customized congestion value considers the impact of speed fluctuations on congestion. The method proposed in this paper offers a benchmark solution for characterizing urban traffic congestion and formulating travel guidelines.
科研通智能强力驱动
Strongly Powered by AbleSci AI