Contrastive learning-based histopathological features infer molecular subtypes and clinical outcomes of breast cancer from unannotated whole slide images

乳腺癌 计算机科学 人工智能 数字化病理学 特征(语言学) 机器学习 计算生物学 深度学习 精密医学 癌症 模式识别(心理学) 医学 病理 生物 内科学 哲学 语言学
作者
Hui Liu,Yang Zhang,Judong Luo
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 107997-107997 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.107997
摘要

The artificial intelligence-powered computational pathology has led to significant improvements in the speed and precision of tumor diagnosis, while also exhibiting substantial potential to infer genetic mutations and gene expression levels. However, current studies remain limited in predicting molecular subtypes and clinical outcomes in breast cancer. In this paper, we proposed a weakly supervised contrastive learning framework to address this challenge. Our framework first performed contrastive learning pretraining on a large number of unlabeled patches tiled from whole slide images (WSIs) to extract patch-level features. The gated attention mechanism was leveraged to aggregate patch-level features to produce slide feature that was then applied to various downstream tasks. To confirm the effectiveness of the proposed method, three public cohorts and one external independent cohort of breast cancer have been used to conducted evaluation experiments. The predictive powers of our model to infer gene expression, molecular subtypes, recurrence events and drug responses were validated across cohorts. In addition, the learned patch-level attention scores enabled us to generate heatmaps that were highly consistent with pathologist annotations and spatial transcriptomic data. These findings demonstrated that our model effectively established the high-order genotype-phenotype associations, thereby potentially extend the application of digital pathology in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小燕完成签到 ,获得积分10
刚刚
1秒前
半夜炒茄子完成签到,获得积分10
1秒前
热心的芙蓉完成签到 ,获得积分10
1秒前
Choi完成签到,获得积分10
3秒前
梦在远方完成签到 ,获得积分10
3秒前
传奇3应助无底洞采纳,获得10
3秒前
AA发布了新的文献求助10
3秒前
郝大的王完成签到 ,获得积分10
4秒前
KSAcc完成签到,获得积分20
5秒前
莫羽倾尘完成签到,获得积分0
5秒前
ningning发布了新的文献求助10
5秒前
5秒前
Choi发布了新的文献求助10
5秒前
飞飞完成签到,获得积分10
6秒前
6秒前
s_yu完成签到,获得积分10
7秒前
封似狮完成签到,获得积分10
7秒前
8秒前
Maple完成签到,获得积分10
9秒前
lif发布了新的文献求助10
10秒前
畸你太美完成签到,获得积分10
11秒前
12秒前
潘票完成签到 ,获得积分10
12秒前
胡图图发布了新的文献求助30
13秒前
14秒前
尊敬依珊完成签到 ,获得积分10
14秒前
weilong完成签到,获得积分20
14秒前
15秒前
123456789完成签到,获得积分10
15秒前
尼古拉耶维奇完成签到 ,获得积分10
17秒前
17秒前
18秒前
momomiao发布了新的文献求助10
19秒前
无情白羊发布了新的文献求助10
19秒前
21秒前
焱焱不忘完成签到 ,获得积分0
22秒前
Aurora.H完成签到,获得积分10
22秒前
淡定的幻枫完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4807219
求助须知:如何正确求助?哪些是违规求助? 4122120
关于积分的说明 12753279
捐赠科研通 3856850
什么是DOI,文献DOI怎么找? 2123440
邀请新用户注册赠送积分活动 1145522
关于科研通互助平台的介绍 1038074