已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Contrastive learning-based histopathological features infer molecular subtypes and clinical outcomes of breast cancer from unannotated whole slide images

乳腺癌 计算机科学 人工智能 数字化病理学 特征(语言学) 机器学习 计算生物学 深度学习 精密医学 癌症 模式识别(心理学) 医学 病理 生物 内科学 语言学 哲学
作者
Hui Liu,Yang Zhang,Judong Luo
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 107997-107997 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.107997
摘要

The artificial intelligence-powered computational pathology has led to significant improvements in the speed and precision of tumor diagnosis, while also exhibiting substantial potential to infer genetic mutations and gene expression levels. However, current studies remain limited in predicting molecular subtypes and clinical outcomes in breast cancer. In this paper, we proposed a weakly supervised contrastive learning framework to address this challenge. Our framework first performed contrastive learning pretraining on a large number of unlabeled patches tiled from whole slide images (WSIs) to extract patch-level features. The gated attention mechanism was leveraged to aggregate patch-level features to produce slide feature that was then applied to various downstream tasks. To confirm the effectiveness of the proposed method, three public cohorts and one external independent cohort of breast cancer have been used to conducted evaluation experiments. The predictive powers of our model to infer gene expression, molecular subtypes, recurrence events and drug responses were validated across cohorts. In addition, the learned patch-level attention scores enabled us to generate heatmaps that were highly consistent with pathologist annotations and spatial transcriptomic data. These findings demonstrated that our model effectively established the high-order genotype-phenotype associations, thereby potentially extend the application of digital pathology in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大千完成签到,获得积分20
1秒前
3秒前
4秒前
Kirito应助机灵柚子采纳,获得10
6秒前
白大褂的路完成签到 ,获得积分10
7秒前
zcc发布了新的文献求助10
8秒前
执着汉堡发布了新的文献求助10
10秒前
scup发布了新的文献求助10
14秒前
邰墨以完成签到 ,获得积分10
15秒前
zcc完成签到,获得积分20
20秒前
PQ完成签到,获得积分10
20秒前
wanci应助飞云采纳,获得10
24秒前
cdercder应助小宋采纳,获得10
25秒前
完美世界应助路卡利欧采纳,获得10
26秒前
充电宝应助vagary采纳,获得30
31秒前
scup完成签到,获得积分10
31秒前
淡淡母鸡完成签到 ,获得积分10
32秒前
33秒前
丰D完成签到,获得积分10
35秒前
35秒前
淡淡母鸡关注了科研通微信公众号
36秒前
36秒前
明天更好完成签到 ,获得积分10
37秒前
37秒前
三百一十四完成签到 ,获得积分10
38秒前
飞云发布了新的文献求助10
39秒前
林g完成签到,获得积分10
40秒前
路卡利欧发布了新的文献求助10
41秒前
42秒前
43秒前
45秒前
给好评完成签到,获得积分20
46秒前
科研通AI5应助ZTK采纳,获得20
46秒前
希望天下0贩的0应助时光采纳,获得10
47秒前
AB19212完成签到,获得积分10
49秒前
好会呀发布了新的文献求助10
49秒前
50秒前
路卡利欧完成签到,获得积分10
51秒前
TT小天完成签到,获得积分10
51秒前
53秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843103
求助须知:如何正确求助?哪些是违规求助? 3385297
关于积分的说明 10539964
捐赠科研通 3105922
什么是DOI,文献DOI怎么找? 1710740
邀请新用户注册赠送积分活动 823719
科研通“疑难数据库(出版商)”最低求助积分说明 774264