清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Drug–target affinity prediction with extended graph learning-convolutional networks

计算机科学 图形 特征学习 机器学习 药物发现 人工智能 理论计算机科学 数据挖掘 生物信息学 生物
作者
Haiou Qi,Ting Yu,Wenwen Yu,Chenxi Liu
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:25 (1) 被引量:5
标识
DOI:10.1186/s12859-024-05698-6
摘要

Abstract Background High-performance computing plays a pivotal role in computer-aided drug design, a field that holds significant promise in pharmaceutical research. The prediction of drug–target affinity (DTA) is a crucial stage in this process, potentially accelerating drug development through rapid and extensive preliminary compound screening, while also minimizing resource utilization and costs. Recently, the incorporation of deep learning into DTA prediction and the enhancement of its accuracy have emerged as key areas of interest in the research community. Drugs and targets can be characterized through various methods, including structure-based, sequence-based, and graph-based representations. Despite the progress in structure and sequence-based techniques, they tend to provide limited feature information. Conversely, graph-based approaches have risen to prominence, attracting considerable attention for their comprehensive data representation capabilities. Recent studies have focused on constructing protein and drug molecular graphs using sequences and SMILES, subsequently deriving representations through graph neural networks. However, these graph-based approaches are limited by the use of a fixed adjacent matrix of protein and drug molecular graphs for graph convolution. This limitation restricts the learning of comprehensive feature representations from intricate compound and protein structures, consequently impeding the full potential of graph-based feature representation in DTA prediction. This, in turn, significantly impacts the models’ generalization capabilities in the complex realm of drug discovery. Results To tackle these challenges, we introduce GLCN-DTA, a model specifically designed for proficiency in DTA tasks. GLCN-DTA innovatively integrates a graph learning module into the existing graph architecture. This module is designed to learn a soft adjacent matrix , which effectively and efficiently refines the contextual structure of protein and drug molecular graphs. This advancement allows for learning richer structural information from protein and drug molecular graphs via graph convolution, specifically tailored for DTA tasks, compared to the conventional fixed adjacent matrix approach. A series of experiments have been conducted to validate the efficacy of the proposed GLCN-DTA method across diverse scenarios. The results demonstrate that GLCN-DTA possesses advantages in terms of robustness and high accuracy. Conclusions The proposed GLCN-DTA model enhances DTA prediction performance by introducing a novel framework that synergizes graph learning operations with graph convolution operations, thereby achieving richer representations. GLCN-DTA does not distinguish between different protein classifications, including structurally ordered and intrinsically disordered proteins, focusing instead on improving feature representation. Therefore, its applicability scope may be more effective in scenarios involving structurally ordered proteins, while potentially being limited in contexts with intrinsically disordered proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Julie完成签到,获得积分10
44秒前
Zhahu完成签到 ,获得积分10
1分钟前
widesky777完成签到 ,获得积分10
1分钟前
sissiarno完成签到,获得积分0
1分钟前
2分钟前
laicai发布了新的文献求助10
2分钟前
烤鸭完成签到 ,获得积分10
2分钟前
尚青华完成签到 ,获得积分10
3分钟前
香丿完成签到 ,获得积分10
3分钟前
lina完成签到 ,获得积分10
3分钟前
Freddy完成签到 ,获得积分10
4分钟前
芹123完成签到,获得积分10
4分钟前
独特白亦应助芹123采纳,获得10
4分钟前
Lucas应助Julie采纳,获得10
4分钟前
Julie给Julie的求助进行了留言
4分钟前
似水流年完成签到 ,获得积分10
5分钟前
辛勤的泽洋完成签到 ,获得积分10
5分钟前
云缘墨色完成签到 ,获得积分10
5分钟前
我爱科研完成签到 ,获得积分10
5分钟前
咿呀咿呀完成签到 ,获得积分10
5分钟前
胡国伦完成签到 ,获得积分10
5分钟前
酷波er应助Marciu33采纳,获得10
5分钟前
风吹而过完成签到 ,获得积分10
6分钟前
zhangguo完成签到 ,获得积分10
6分钟前
欣欣完成签到 ,获得积分10
6分钟前
xxxrass完成签到 ,获得积分10
6分钟前
乐观的问兰完成签到 ,获得积分10
7分钟前
7分钟前
Marciu33发布了新的文献求助10
7分钟前
干净柏柳完成签到 ,获得积分10
7分钟前
情怀应助67采纳,获得10
7分钟前
虞不斜完成签到 ,获得积分10
8分钟前
小帅完成签到 ,获得积分10
8分钟前
刘刘完成签到 ,获得积分10
8分钟前
越野完成签到 ,获得积分10
8分钟前
LINDENG2004完成签到 ,获得积分10
9分钟前
LOST完成签到 ,获得积分10
10分钟前
xingsixs完成签到 ,获得积分10
10分钟前
Marciu33发布了新的文献求助10
10分钟前
Marciu33完成签到,获得积分20
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4764967
求助须知:如何正确求助?哪些是违规求助? 4103325
关于积分的说明 12694613
捐赠科研通 3820584
什么是DOI,文献DOI怎么找? 2108747
邀请新用户注册赠送积分活动 1133242
关于科研通互助平台的介绍 1013438