Deep Learning Enabled SERS Identification of Gaseous Molecules on Flexible Plasmonic MOF Nanowire Films

等离子体子 纳米线 纳米技术 材料科学 表面增强拉曼光谱 分析物 拉曼光谱 分子 拉曼散射 多孔性 光电子学 化学 有机化学 光学 物理 物理化学 复合材料
作者
Minghong Li,Xi He,Chaolin Wu,Li Wang,Xin Zhang,Xiangnan Gong,Xiping Zeng,Yingzhou Huang
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (2): 979-987 被引量:13
标识
DOI:10.1021/acssensors.3c02519
摘要

Through the capture of a target molecule at the metal surface with a highly confined electromagnetic field induced by surface plasmon, surface enhanced Raman spectroscopy (SERS) emerges as a spectral analysis technology with high sensitivity. However, accurate SERS identification of a gaseous molecule with low density and high velocity is still a challenge due to its difficulty in capture. In this work, a flexible paper-based plasmonic metal–organic framework (MOF) film consisting of Ag nanowires@ZIF-8 (AgNWs@ZIF-8) is fabricated for SERS detection of gaseous molecules. Benefiting from its micronanopores generated by the nanowire network and ZIF-8 shell, the effective capture of the gaseous molecule is achieved, and its SERS spectrum is obtained in this paper-based flexible plasmonic MOF nanowire film. With optimal structure parameters, spectra of gaseous 4-aminothiophenol, 4-mercaptophenol, and dithiohydroquinone demonstrate that this film has good SERS performance, which could maintain obvious Raman signals within 30 days during reproducible detection. To realize SERS identification of gaseous molecules, deep learning is performed based on the SERS spectra of the mixed gaseous analyte obtained in this flexible porous film. The results point out that an artificial neural network algorithm could identify gaseous aldehydes (gaseous biomarker of colorectal cancer) in simulated exhaled breath with high accuracy at 93.7%. The integration of the flexible paper-based film sensors with deep learning offers a promising new approach for noninvasive colorectal cancer screening. Our work explores SERS applications in gaseous analyte detection and has broad potential in clinical medicine, food safety, environmental monitoring, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
3秒前
三国时代发布了新的文献求助200
3秒前
小蚂蚁发布了新的文献求助20
4秒前
迷人的小王完成签到,获得积分20
4秒前
5秒前
6秒前
6秒前
从容诗云发布了新的文献求助10
6秒前
蛋妮完成签到 ,获得积分10
7秒前
lucas发布了新的文献求助10
7秒前
独特谷雪发布了新的文献求助10
8秒前
酷波er应助yyy采纳,获得10
8秒前
8秒前
dinhogj完成签到 ,获得积分10
9秒前
9秒前
含蓄冰姬发布了新的文献求助10
9秒前
Rier完成签到,获得积分10
9秒前
Hermie发布了新的文献求助10
9秒前
Gin发布了新的文献求助10
10秒前
lbxlbxlbx完成签到,获得积分10
10秒前
Owen应助冷静的媚颜采纳,获得10
10秒前
儒雅的冷松完成签到,获得积分10
11秒前
科研通AI5应助XXD5423采纳,获得10
12秒前
12秒前
落清欢发布了新的文献求助10
12秒前
YYYYYYYYY发布了新的文献求助10
12秒前
sky发布了新的文献求助10
13秒前
wuy发布了新的文献求助10
14秒前
科研通AI5应助如意采纳,获得30
14秒前
Hello完成签到,获得积分10
14秒前
yang发布了新的文献求助10
14秒前
15秒前
17秒前
山海完成签到,获得积分10
17秒前
打打应助Hermie采纳,获得10
19秒前
甜甜茈发布了新的文献求助10
19秒前
yyy发布了新的文献求助10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787714
求助须知:如何正确求助?哪些是违规求助? 3333335
关于积分的说明 10261246
捐赠科研通 3049024
什么是DOI,文献DOI怎么找? 1673399
邀请新用户注册赠送积分活动 801874
科研通“疑难数据库(出版商)”最低求助积分说明 760385