Flow synthesis development and photocatalytic activity optimization of copper oxide nanoparticles using design of experiments

光催化 纳米颗粒 氧化物 响应面法 材料科学 纳米技术 化学工程 催化作用 化学 有机化学 色谱法 冶金 工程类
作者
George Ebri,Klaus Hellgardt
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:486: 150131-150131 被引量:4
标识
DOI:10.1016/j.cej.2024.150131
摘要

Many studies have focused on reducing the impact of carbon dioxide (CO2) on climate change. A promising approach for CO2 utilization is to use a photocatalyst to activate CO2 and generate valuable chemical compounds. One of the most commonly synthetized photocatalysts is cuprous oxide (Cu2O); however, low efficiency and fast deactivation still limit its industrial application. Here, a batch synthesis in nonaqueous media of Cu2O containing small amounts of metallic copper (Cu0) is investigated. By adjusting the ratio between Cu2O and Cu0 an enhanced photocatalytic efficiency is obtained. To overcome the deactivation limitations of Cu2O, a flow synthesis is developed that continuously supplies fresh photocatalysts to the reaction environment. The flow synthesis has the potential to allow the separate evaluation of the intrinsic reaction kinetic from the photocatalyst deactivation. This work optimizes the flow synthesis using a design of experiments (DOE) approach coupled with response surface methodology (RSM). The obtained surface responses for the measured factors were highly significant (p-value < 0.01 and R2 > 0.95). This novel methodology makes it possible to identify the optimum process conditions to simultaneously improve photocatalytic performance of the obtained material and reaction productivity. This approach enabled us to obtain in flow a combination of Cu2O/Cu0 photocatalyst and to propose a reaction mechanism and kinetic model for the Cu2O formation. The optimization procedure for flow synthesis proposed here provides an efficient path that can be extended to flow synthesis of a wide range of nanoparticles for photocatalytic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jenningseastera应助myg8627采纳,获得10
1秒前
科研通AI5应助Weiming采纳,获得30
3秒前
zenabia完成签到 ,获得积分10
7秒前
was_3完成签到,获得积分0
8秒前
安然完成签到 ,获得积分10
9秒前
SYLH应助wodetaiyangLLL采纳,获得10
15秒前
香锅不要辣完成签到 ,获得积分10
20秒前
SX0000完成签到 ,获得积分10
20秒前
受伤白安完成签到,获得积分10
25秒前
tiantian0518完成签到 ,获得积分10
27秒前
我wo完成签到 ,获得积分10
28秒前
要笑cc完成签到,获得积分10
30秒前
QYY完成签到,获得积分10
31秒前
31秒前
yanny完成签到,获得积分10
31秒前
淼淼之锋完成签到 ,获得积分10
32秒前
宣宣宣0733完成签到,获得积分10
32秒前
胡质斌完成签到,获得积分10
34秒前
大气傲易完成签到 ,获得积分10
35秒前
美好灵寒完成签到 ,获得积分10
35秒前
Air完成签到 ,获得积分10
35秒前
Matthewwt发布了新的文献求助20
36秒前
小马甲应助科研通管家采纳,获得10
36秒前
cdercder应助科研通管家采纳,获得10
36秒前
GSQ完成签到,获得积分10
37秒前
666星爷完成签到,获得积分10
39秒前
玼桃树完成签到 ,获得积分10
47秒前
Matthewwt完成签到,获得积分10
49秒前
qqqq发布了新的文献求助10
50秒前
CGFHEMAN完成签到 ,获得积分10
52秒前
77完成签到 ,获得积分10
57秒前
风中的西牛风吹得蛋颤完成签到,获得积分10
57秒前
Hello应助two采纳,获得20
1分钟前
哈桑士完成签到 ,获得积分10
1分钟前
btcat完成签到,获得积分10
1分钟前
onevip完成签到,获得积分0
1分钟前
zeannezg完成签到 ,获得积分10
1分钟前
等待的幼晴完成签到,获得积分10
1分钟前
qiancib202完成签到,获得积分10
1分钟前
小美酱完成签到 ,获得积分0
1分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827379
求助须知:如何正确求助?哪些是违规求助? 3369689
关于积分的说明 10456756
捐赠科研通 3089365
什么是DOI,文献DOI怎么找? 1699847
邀请新用户注册赠送积分活动 817534
科研通“疑难数据库(出版商)”最低求助积分说明 770251