Context Recovery and Knowledge Retrieval: A Novel Two-Stream Framework for Video Anomaly Detection

计算机科学 异常检测 散列函数 人工智能 背景(考古学) 数据挖掘 模式识别(心理学) 古生物学 计算机安全 生物
作者
Congqi Cao,Yue Lu,Yanning Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1810-1825 被引量:12
标识
DOI:10.1109/tip.2024.3372466
摘要

Video anomaly detection aims to find the events in a video that do not conform to the expected behavior. The prevalent methods mainly detect anomalies by snippet reconstruction or future frame prediction error. However, the error is highly dependent on the local context of the current snippet and lacks the understanding of normality. To address this issue, we propose to detect anomalous events not only by the local context, but also according to the consistency between the testing event and the knowledge about normality from the training data. Concretely, we propose a novel two-stream framework based on context recovery and knowledge retrieval, where the two streams can complement each other. For the context recovery stream, we propose a spatiotemporal U-Net which can fully utilize the motion information to predict the future frame. Furthermore, we propose a maximum local error mechanism to alleviate the problem of large recovery errors caused by complex foreground objects. For the knowledge retrieval stream, we propose an improved learnable locality-sensitive hashing, which optimizes hash functions via a Siamese network and a mutual difference loss. The knowledge about normality is encoded and stored in hash tables, and the distance between the testing event and the knowledge representation is used to reveal the probability of anomaly. Finally, we fuse the anomaly scores from the two streams to detect anomalies. Extensive experiments demonstrate the effectiveness and complementarity of the two streams, whereby the proposed two-stream framework achieves state-of-the-art performance on ShanghaiTech, Avenue and Corridor datasets among the methods without object detection. Even if compared with the methods using object detection, our method reaches competitive or better performance on the ShanghaiTech, Avenue, and Ped2 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ling发布了新的文献求助10
1秒前
GGb发布了新的文献求助10
2秒前
云城完成签到 ,获得积分10
2秒前
3秒前
liangkai完成签到,获得积分10
5秒前
小蘑菇应助zhouenen采纳,获得10
5秒前
6秒前
科研通AI5应助Ming采纳,获得10
9秒前
10秒前
blueweier完成签到 ,获得积分10
11秒前
小卫卫发布了新的文献求助10
13秒前
13秒前
方法法国衣服头发完成签到,获得积分10
13秒前
15秒前
可靠蜗牛完成签到,获得积分10
20秒前
长苼完成签到,获得积分10
20秒前
儒雅涵易完成签到 ,获得积分10
24秒前
百灵鸟完成签到,获得积分10
26秒前
27秒前
敏感的芷珊完成签到,获得积分10
27秒前
28秒前
30秒前
31秒前
桃博完成签到,获得积分10
31秒前
小唐发布了新的文献求助10
32秒前
xingxinghan发布了新的文献求助10
32秒前
可爱的函函应助Lx030324采纳,获得10
32秒前
xiaohu6311完成签到,获得积分10
33秒前
小卫卫完成签到,获得积分10
35秒前
解泽星发布了新的文献求助10
35秒前
xiaohu6311发布了新的文献求助10
36秒前
阿言完成签到 ,获得积分10
37秒前
云城发布了新的文献求助100
37秒前
解泽星完成签到,获得积分10
40秒前
Skyblue666完成签到 ,获得积分10
41秒前
www完成签到,获得积分10
42秒前
42秒前
43秒前
小唐完成签到,获得积分10
44秒前
45秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
Cysteine protease ervatamin-B-like-mediated spermatophore digestion and sperm release impair fertility of Plutella xylostella females 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4129400
求助须知:如何正确求助?哪些是违规求助? 3666443
关于积分的说明 11599634
捐赠科研通 3365051
什么是DOI,文献DOI怎么找? 1849020
邀请新用户注册赠送积分活动 912822
科研通“疑难数据库(出版商)”最低求助积分说明 828259