An S-scheme heterointerface-engineered high-performance ternary NiAl-LDH@TiO2/Ti3C2 MXene photocatalytic system for solar-powered CO2 reduction to produce energy-rich fuels

材料科学 三元运算 光催化 异质结 化学工程 MXenes公司 光电子学 纳米技术 催化作用 化学 生物化学 计算机科学 工程类 程序设计语言
作者
Dong‐Eun Lee,Devthade Vidyasagar,B. Moses Abraham,Wan‐Kuen Jo,Surendar Tonda
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:480: 148227-148227 被引量:24
标识
DOI:10.1016/j.cej.2023.148227
摘要

While there is much potential for photocatalytic CO2 reduction, poor light absorption and high recombination rates of photogenerated charges limit its effectiveness. To address these challenges, we systematically developed a heterointerface-engineered ternary hybrid photocatalyst comprising NiAl-layered double hydroxide (LDH), titanium dioxide (TiO2), and titanium carbide (Ti3C2) MXene via an in situ growth approach. As a result of the unique combination of these three components, the synthesized ternary NiAl-LDH@TiO2/Ti3C2 photocatalyst demonstrated broad light absorption spanning across the ultraviolet, visible, and near-infrared regions, as well as elevated CO2 adsorption capacity. In situ-irradiated X-ray photoelectron spectroscopy and electron paramagnetic resonance analyses provided compelling evidence for an unconventional S-scheme charge transfer mechanism in the ternary system that effectively separates the charges and suppresses recombination, allowing NiAl-LDH to maintain its strong reducing capacity and TiO2 to maintain its robust oxidizing capacity. Utilizing the complementary and synergistic properties of these three components (NiAl-LDH, TiO2, and Ti3C2), an optimized ternary NiAl-LDH@TiO2/Ti3C2 photocatalyst with 30 wt% Ti3C2 exhibited extraordinary solar-driven CO2 reduction performance with a remarkable 99 % CO selectivity against competitive H2 production and a high apparent quantum yield of 0.81 at 365 nm. Additionally, the ternary photocatalyst exhibited excellent stability, maintaining its performance capacity over multiple CO2 reduction cycles. This work provides a fresh perspective on designing and creating efficient ternary S-scheme photocatalytic systems for solar-driven CO2 reduction and highlights the potential for energy-rich fuel production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ze完成签到,获得积分20
1秒前
tuobei发布了新的文献求助10
1秒前
Xiaoxiao应助jia采纳,获得10
2秒前
动漫大师发布了新的文献求助50
2秒前
kiki发布了新的文献求助10
3秒前
甜蜜的大树完成签到,获得积分10
4秒前
july完成签到,获得积分10
5秒前
ze发布了新的文献求助10
5秒前
7秒前
7秒前
执着卿完成签到,获得积分10
7秒前
J11发布了新的文献求助10
7秒前
ptjam完成签到 ,获得积分10
7秒前
9秒前
Akim应助zhang采纳,获得10
10秒前
阮人雄发布了新的文献求助10
11秒前
Miaoao关注了科研通微信公众号
13秒前
14秒前
研友_5Y9X75完成签到,获得积分10
14秒前
pancrazio完成签到,获得积分10
15秒前
17秒前
今后应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
110应助科研通管家采纳,获得10
19秒前
铎幸福应助科研通管家采纳,获得10
19秒前
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
20秒前
20秒前
绿琦发布了新的文献求助10
21秒前
過客发布了新的文献求助10
21秒前
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798061
求助须知:如何正确求助?哪些是违规求助? 3343561
关于积分的说明 10316564
捐赠科研通 3060257
什么是DOI,文献DOI怎么找? 1679407
邀请新用户注册赠送积分活动 806560
科研通“疑难数据库(出版商)”最低求助积分说明 763244